

`2 + sqrt(2)`

`2 - sqrt(2)`

`2sqrt(2)`

` sqrt(2)`



3 units

5 units

`3sqrt3` units

`5sqrt2 ` units



`5` units

`6` units

`8` units

`10` units



`r = 1`

`1 < r < 2`

`r = 2`

`2 < r < 8`



`x + y = 0`

`x - y = 0`

`x + y = a + b`

`x - y = a^2 - b^2`



` ( (a^2 + b^2 )/(a^2 - b^2))^2`

`2 ((a^2 + b^2)/(a - b))^2`

`4 ((a^2 + b^2)/(a - b))^2`

None of these



`sqrt(2)`

`2 sqrt(2)`

`2`

`1`



`3` units and `4` units

`6` units and `4` units

`3` units and `8` units

`6` units and `8` units



It represents a circle of diameter a

It represents a circle of radius a

It represents a parabola

None of the above



` sqrt( a^2 + b^2)`

`( a^2 + b^2)`

` a + b`

` 2(a + b)`



`c = sqrt( a^2 + b^2)`

` 1/c = 1/a^2 + 1/b^2 `

` c = 1/a^2 + 1/b^2 `

` c = 1/ (a^2 - b^2)`



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



`1/4`

`1/2`

`1`

`2`



`{-2, -1)`

`(0, 1)`

`(-1,-2)`

`(2,-1)`



`3` units

`4` units

`5` units

`6` units



`a = b` and `c = 0`

`f=g` and `h=0`

`a=b` and `h=0`

`f=g` and `c=0`



`{(2, 0), (-2, 0), (0, 2)}`

`{(0, 2), (0, -2)}`

`{(0, 2), (2, 0)}`

` { (2, 0), (-2, 0), (0, 2), (0, -2)}`



`x^2 + y^2 - 4x + 4y + 4 = 0`

`x^2 + y^2 -4x- 4y + 4 = 0`

`x^2 + y^2 + 4x- 4y- 4 = 0`

`x^2 + y^2 + 4x + 4y- 4 = 0`



Only I

Only II

Both I and II

Neither I nor II



Only the `X`-axis

Only the `Y`-axis

Both the axes

Neither of the axes



`g^2 =k`

`g^2 =f`

`f^2 =k`

`f^2 =g`



`4`

`5`

`6`

`7`


Assertion : ` AD * BD < OB 8 OC`
Reason : `2 (AD^2 + BD^2 ) = CD^2 = 100 sq cm`
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`x+ 3y = 0`

`x + y =0`

`x =y`

`3x + y =0`



exterior point

interior point but not centre

boundary point

centre



`g = - sqrt (c)`

`g= pm sqrt (c)`

`f = sqrt (c)`

`f= pm sqrt (c)`



`x^2 + y^2 + 2x + 2 y + 1 = 0`

`x^2 + y^2 - 4x- 4y + 1 = 0`

`x^2 + y^2 -2x- 2y + 1 = 0`

none of the above
