

rectangle

rhombus

trapezium

parallelogram





`2`

`3`

`4`

zero





`sqrt{2} [cos (-frac{ pi}{2})+i sin(-frac{pi}{2})]`

`sqrt{2} [cos (frac{3 pi}{2})+i sin(frac{3 pi}{2})]`

`sqrt{2} [cos (-frac{3 pi}{4})+i sin(-frac{3 pi}{4})]`

`sqrt{2} [cos (frac{ pi}{2})+i sin(frac{pi}{2})]`







`x ^ 2 -x+1=0`

`x ^ 2 +x+1=0`

` x ^ 2 +x-1=0`

`x ^ 2 -x-1=0`



`3`

`2`

`1`

`0`



`1`

`2`

`3`

`oo`



`3 sqrt(2) i`

`2 sqrt(2) i`

`4 sqrt(2) i`

None of these


True
False


`cos 2 n theta`

`sin 2 n theta`

`0`

`R-{0}`



`e^(-pi/4) cos (1/2 log 2)`

`-e^(-pi/4) sin (1/2 log 2)`

`e^(pi/4) cos (1/2 log 2)`

`e^(-pi/4) sin (1/2 log 2)`



a straight line

a point

a circle

a pair of straight line



` a = 1` alone

`a = 2` alone

for all values of a except `2`

for no value of `a`



`0`

`-1`

`1`

`i`



`z` is purely real

`z` is purely imaginary

`z = bar (z) =0`

`(z- bar (z))i` is purely imaginary



equal to 1

less than 1

greater than 1

equal to 3



`(z bar(z))` is purely imaginary

`(z. bar(z))` is non-negative real

`(z- bar(z))` is purely real

`(z + bar (z) )` is purely imaginary



`3 omega`

`3 omega (omega - 1)`

`3 omega^2`

`3 omega (1 - omega)`



` omega , omega^2`

` omega , omega^3`

` omega^2 , omega^3`

None of these



`(z_1 + z_2 +z_3)/3`

`(z_1 +z_2 +z_3)/2`

`z_1 + z_2 +z_3`

None of these
