

`0`

`1`

`i`

`-i`



`2`

`2i`

`-2i`

`i`



`i`

`-i`

`0`

`i - 1`



`1`

`3`

`4`

`5`



`0`

`1`

`-1`

None of these



`1`

`-1`

`i`

`-i`



` (1 +i)/2`

` (1 - i)/2`

` (1 +i)/sqrt(2)`

None of these





`-8`

`8`

`8i`

`-8i`



i+1

i-1

-i+1

None of these



`16`

`12`

`8`

`4`



`3`

`4`

`6`

None of these



`0 `

`1``

`2`

`4`




`1, 0`

`1, 1`

`2, 0`

`2, 1`





`6`

`12`

`18`

`36`



`3`

`2`

`1`

`0`



Only `1`

Only `2`

Only `3`

None of these



` (3pi)/4`

`pi/4`

` (5pi)/6`

` - (3pi)/4`



greater than the quotient of their moduli

less than the quotient of their moduli

less than or equal to the quotient of their moduli

equal to the quotient of their moduli



`z = 1 + i`

`|z | = 2`

`z =1 - i`

`|z | = 1`



` (|z|)/2`

`|z|`

`2 |z|`

None of these



`arg (z_1)=arg(z_2)`

`arg(z_1)+arg(z_2)=pi/2`

`z_1z_2=1`

`|z_1|=|z_2|`



`3`

`1//2`

`1`

None of these



`0`

`1`

`2`

None of these



a circle

an ellipse

a hyperbola

a parabola



`0`

`pi/2`

`pi`

`(3pi)/2`



Only I

Only II

Both I and II

Neither I nor II



`1`

`sqrt(5)`

`sqrt(3)`

`5`



`3/5`

`9/(25)`

`3/(25)`

`5/3`



`2 cos \ pi/5`

`2 sin \ pi/5`

`2 cos \ pi/(10)`

`2 sin \ pi/(10)`



`sec alpha`

`- sec alpha`

`sec^2 alpha`

`- sec^2 alpha`



`pi/2 - theta/2`

`pi/2 + theta/2`

`pi/4 - theta/2`

`pi/4 + theta/2`



`(5 pi)/4`

`- (5 pi)/4`

`(3 pi)/4`

None of these



`0`

`pi/4`

`- pi/4`

`pi/2`



`2sqrt(3) + 2i`

`2sqrt(3) - 2i`

`- 2sqrt(3) + 2i`

`- sqrt(3) + i`



A pair of straight lines

A line

A set of four straight lines

A circle









`0`

`4`

`6`

`10`





`sqrt3 +1`

`sqrt5 +1`

2

`2 + sqrt2`



`sqrt3`

`sqrt3 + sqrt2`

`sqrt3 + 1`

`sqrt3 -1`



`-8`

`0`

`4`

`8`



The real part of z is zero

The imaginary part of z is zero

The real part of z is equal to imaginary part of z

The sum of real and imaginary parts of z is z



`0`

`-1`

`1`

`8`



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



`x= 3, y = - 3`

`x = - 3, y = 3`

`x = - 3, y = -3`

`x = 3, y = 3`



`x - iy`

`x + iy`

`2x`

`-2iy`



`1 + i`

`1 - i`

` (sqrt(3)(1 - i))/ 2`

` (sqrt(3) - i)/2`



`4`

`-4`

`8`

`-8`



`2`

`3`

`4`

zero



one

two

three

Five



`i`

`-i`

`0`

`1`



one solution

3 solutions

2 solutions

no solution



`1`

`2`

`3`

`oo`



`3/2-2i`

`3/2+2i`

`2-3/2i`

None of these



`2`

`3`

`4`

None of these



`1`

`2`

`3`

`4`



`1`

`-1`

`i`

`-i`



`-2`

`- 1`

`0`

`2`



`1`

`3omega`

`3 omega`

`0`



`0`

`1/2`

`sqrt3/2`

`1`



1

`omega`

`omega^2`

`i omega ` , where ` i = sqrt (-1)`



`2`

`-1`

`-2`

`1`



`3`

`1`

`-1`

`-3`



`-9/8`

`6`

`-18`

`36`



`-1`

`0`

`1`

`2`



`(x -1) (x - omega ) (x + omega^2 )`

`(x -1) (x - omega ) (x - omega^2 )`

`(x -1) (x + omega ) (x + omega^2 )`

`(x -1) (x + omega ) (x - omega^2 )`



`-1`

`0`

`1`

`2`



`a/b`

`b`

`omega`

`omega^2`



`x^2 - x + 1 = 0`

`x^2 + x + 1 = 0`

`x^2 + x - 1 = 0`

`x^2 - x - 1 = 0`



`alpha`

`alpha^2`

`0`

`1`



`z = 0` or `omega = 0`

`z = 0` and `omega = 0`

`z. bar omega` is purely real

`z · bar omega` is purely imaginary



`1`

`0`

`omega`

`omega^2`


Assertion : ` ( ( -1 + sqrt(-3))/2)^(29) + ( ( -1 - sqrt(-3))/2)^(29) = -1`
Reason : `omega^2 = -1`
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`1`

`-1`

`2`

`-2`



`2 omega - 3i`

`3 omega - 2i`

`2 omega + 3i`

`3 omega - 2i`



Only I

Only II

Both I and II

Neither I nor II



`-2`

`-1`

`0`

`1`



`-1`

`0`

`1`

`2`



`1`

`2`

`2^(24)`

`2^(48)`



`3^(27) omega`

`- 3^(27) omega^2`

`3^(27)`

`- 3^(27)`



`0`

`1`

`2`

`3`



`-1`

`0`

`1`

`4`



`omega`

`-omega^2`

`-omega`

`0`



`(3n)/(omega -1)`

`3n (omega -1)`

`(omega -1)/(3n)`

`0`



`0`

`-1`

`1`

`i`



`1`

`-3`

`-1`

`7`



`1`

`-1`

`i `

`-i`



`-cos 3x`

`-sin 3x`

`sin 3x`

`cos 3x`



`1`

`1//6`

`6`

`2`



`-1`

`0`

`1`

`2`



`cos n pi- i sin n theta`

`cos n theta + i sin n theta`

`cos 2n theta - i sin 2n theta`

`cos 2ntheta + i sin 2n theta`



`1`

`-1`

`-i`

`i`



`2 + i`

`2 - i`

`- 2 + i`

`- 3 - i`



`± (1 + i)`

`± (1 - i)`

`± i`

`± 1`



`pm ( sqrt(3)/2 + i/2)`

`pm ( sqrt(3)/2 - i/2)`

`pm ( 1/2 + i sqrt(3)/2 )`

`pm ( 1/2 - i sqrt(3)/2 )`



`1 + 4 i`

`4 + i`

`1- i`

`-1- i`



centre `(- 3,- 1)` and radius `3`

centre `(- 3, 1)` and radius `3`

centre `(- 3,- 1)` and radius `4`

centre `(- 3, 1)` and radius `4`



It passes through the origin

It is parallel to the X-axis

It is parallel to the Y-axis

It passes through (0, b)
