

`1/2 ln | (x^7-1)/(x^7+1)|+c`

`1/7 ln | (x^7+1)/(7x)|+c`

`1/7 ln | (x^7-1)/(7x)|+c`

`1/7 ln | (x^7)/(x^7+1)|+c`



`x^2/2+c`

`ln (x+e) +c`

`ln (x^e+e^x)+c`

`1/e ln (x^e+e^x) +c`



`( x+secx) e^(sinx)+C`

`(x- secx) e^(sinx)+C`

`(x+tanx)e^(sinx)+C`

`(x-tanx)e^(sinx)+C`



`a^ 2 + b^2`

`sqrt(a^ 2 + b^2)`

`a + b`

`sqrt(a^ 2 - b^2)`



` tan^(-1) (a/b)`

` tan^(-1) (b/a)`

` tan^(-1) ((a+b)/(a-b))`

` tan^(-1) ((a-b)/(a+b))`



` ln | ( x + sqrt( x^2 + a^2))/a | + C`

` ln | ( x - sqrt( x^2 + a^2))/a | + C`

` ln | ( x^2 + sqrt( x^2 + a^2))/a | + C`

None of these



`1 +e^x + C`

`ln (1 + e^(-x)) + C`

`ln(1 + e^(x)) + C`

` 2ln (1 + e^(-x)) + C`



`(x + 1)^2 e^x + C`

`(x + 1) e^x + C`

` e^x/(x+1) + C`

` e^x/(x+1)^2 + C`



`tan x - (tan^3 x)/3 + 4x`

`tan x + (tan^3 x)/3 + 4x`

`tan x + (sec^3 x)/3 + 4x`

`- tan x - (tan^3 x)/3 + 4x`



`1`

`1/2`

`-1/2`

`1/4`



`1`

`1/2`

`- 1/2`

`1/4`



`log | sqrt(4+x^2)+x|+C`

`log | sqrt(4+x^2)-x|+C`

`sin^(-1)(x/2)+C`

None of the above



`x+C`

`x^2/2 +C`

`x^2+C`

None of these



`e^(e^x)+C`

`2e^(e^x)+C`

`e^(e^x) e^x+C`

`2e^(e^x) e^x+C`



`x sin x+C`

`x cos x+C`

`-x sin x+C`

`-x cos x+C`



`ln (ln x)+C`

`ln x +C`

`(ln x)^2+C`

None of these



`x e^(|ln x|)+C`

`-x e^(|-ln x|)+C`

`x+C`

`x^2/2+C`



`(a^x e^x)/(ln a)+C`

`a^x e^x+C`

`(a^xe^x)/(ln(ae))+C`

None of these



`(ln x)^2/2 +C`

`((ln x))/2+C`

`(ln x)^2+C`

None of these



`2 cosec 2x + C`

`- 2 cot 2x + C`

`2 sec 2x + C`

`- 2 tan 2x + C`



`(x^2+1)^(7//2)+C`

`2/7 (x^2+1)^(7//2)+C`

`1/7 (x^2+1)^(7//2)+C`

None of these



Only I

Only II

Both I and II

Neither I nor II



`tan x+cot x+C`

`tan x-cot x+C`

`(tan x+cot x)^2+C`

`(tan x-cot x)^2+C`



`xe^x+C`

`e^x(sqrt x)+C`

`2e^x(sqrt x)+C`

`2xe^x+C`



`(cos sqrt x)/2 +C`

`2 cos sqrt x+C`

`-(cos sqrt x)/2 +C`

`-2 cos sqrt x+C`



`(x pi)/2-x^2/2+C`

`pi/2+x^2/2+C`

`-(x pi)/2-x^2/2+C`

`pi/2-x^2/2+C`



`2e^(sqrt x) (x -2sqrt x + 2)+ C`

`2e^(sqrt x) (x + 2sqrt x+ 2) + C`

`2e^(sqrt x) (x + 2 sqrt x -2)+ C`

`2e ^(sqrt x) (x- 2sqrt x- 2) + C`



`(sec^n x)/n+C`

`(sec^(n-1))/(n-1)+C`

`(tan^n x)/n+C`

`(tan^(n-1) x)/(n-1)+C`



`xe^x+C`

`cos (xe)^x+C`

`tan (xe^x)+C`

`x cosec(xe^x)+C`



`e^(ln x) (sin x-cos x)+C`

`(sin x-x cos x)+C`

`(x sin x+cos x)+C`

`(sin x+x cos x)-C`



`x^3/3-x+4 tan^(-1) x+C`

`x^3/3+x+4 tan^(-1)+C`

`x^3/3-x+2 tan^(-1) x+C`

`x^3/3-x-4 tan^(-1) x+C`



`1/3` and `-1/9`

`3` and `-9`

`3` and `9`

`3` and `3`



`x-log x +C`

`x-log (tan x)+C`

`x-log(1+e^x)+C`

`log (1+e^x)+C`



`a sec x + b tan x + C`

`a tan x + b sec x+C`

`a cot x + b cosec x + C`

`a cosec x + b cot x+C`



`1/((1+log x)^3)+C`

`1/((1+log x)^2)+C`

`x/((1+log x))+C`

`x/((1+log x)^2)+C`


Assertion : `int e^x/x(1+x log x)dx=e^x log x+C`
Reason : `int e^x[f(x)+f'(x)]dx=e^xf(x)+C`
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`(sec^5 x)/5+(sec^3 x)/3+C`

`(tan^5x)/5+(tan^3 x)/3+C`

`(tan^5 x)/5+(sec^3 x)/3+C`

`(tan^5 x)/5+(sec^3 x)/3-C`



`log (sec x^o +tan x ^o ) + C`

`(180^o log tan (pi/4+(pi x)/(360^o)))/(180^o) +C`

`(180^o log tan (pi/4+( x)/(2)))/pi +C`

`(180^o log tan (pi/4+(pi x)/(360^o)))/pi +C`



`ln (ex + 1) + C`

`ln (e^(-x) + 1) + C`

`-ln (e^(-x) + 1) + C`

`-(ex + 1) + C`



`tan theta+c`

`cot theta+C`

`1/2 tan theta+C`

`1/2 cot theta+C`



`cosx log tanx +log tan (x//2) + C`

`-cosx log tanx +log tan (x//2) + C`

`cosx log tanx +log cot (x//2) + C`

`-cosx log tanx +log cot (x//2) + C`



`x log (x+1)-x+C`

`(x+1)log(x+1)-x+C`

`1/(x+1)+C`

`(log(x+1))/(x+1)+C`



`2x+alpha`

`x+alpha`

`x/2+alpha`

`x^2+alpha`



`-e^x cot x + C`

`cos^2 (xe^x) + C`

`log sin(xe^x)+ C`

`-cot (xe^x)+ C`
