

`1,1`

`2,1`

`4,1`

`1,4`



`(d^2y)/(dx^2) - 8 (dy)/(dx) + 15 y = 0`

`(d^2y)/(dx^2) + 8 (dy)/(dx) + 15 y = 0`

`(d^2y)/(dx^2) + 8 (dy)/(dx) - 15 y = 0`

None of these



` P(x)`

`P(x)p'(x)`

`P (x) P'''(x)`

constant



`tan y tan x = c`

`(tany)/(tanx) = C`

`(tan^2 x) /(tany) = C`

None of these



`tan (x^2 + y^2) = x^2/y^2 + C`

`cot (x^2 + y^2) = x^2/y^2 + C`

`tan (x^2 + y^2) = y^2/x^2 + C`

`cot (x^2 + y^2) = x^2/y^2 + C`



`0`

`3`

`1`

`2`



`tan^(-1) x`

`1+x^2`

`e^(tan^(-1) x)`

`log_e(1+x^2)`



`m = 3, n = 3`

`m = 3, n = 2`

`m = 3, n = 5`

`m = 3, n = 1`



order 1, degree 3

order 2, degree 2

degree 3, order 3

degree 4, order 4



`y={phi(x) - 1} + Ce^(-phi(x))`

`y phi(x) = {phi(x)}^2+C`

`ye^(phi(x)) = phi(x) e^(phi(x)) +C`

`y-phi(x)e^(-phi(x))`



`y^3 = x^3 log cx`

`y^3 = 3x^3 log cx`

`x^3 = 3x^3 log cx`

`y^3 = 3x^3 log x`



`y = log_e (x) + C`

`y = (log_e x)^2 + C`

` y = pm sqrt ( (log_e x)^2 + 2C )`

`xy = x^y + K`



`2`

`3`

`1`

None of these



`log tan(y/2)=C-2 sin x`

`log tan (y/4)=C-2 sin(x/2)`

`log tan (y/2+pi/4)=C-2 sin x`

`log tan (y/2+pi/4)=C-2 sin (x/2)`



`(a + m) y = e^(mx) + ce^(−ax)`

`y = e^(mx) + ce^(−ax)`

`(a + m) y = e^(mx) + c`

`ye^(ax) = me^(mx) + c`



`x^2 + y^2 = xC`

`x^2 - y^2 = xC`

`x^2 + y^2 = C`

`x^2 - y^2 = C`



`y - sqrt (x^2 + y^2) = Cx^2`

`y + sqrt (x^2 + y^2) = Cx^2`

`y + sqrt(x^2 + y^2) +Cx^2 = 0`

none of the above



`(d^2y)/(dx^2) + 8 (dy)/(dx) + 15 y = 0`

`(d^2y)/(dx^2) - 8 (dy)/(dx) + 15 y = 0`

`(d^2y)/(dx^2) - (dy)/(dx) + y = 0`

None of these



`(log_e x)^3`

`log_e (log_e x)`

`log_e x`

`(log_e x)^(1//3)`



` xy (dy)/(dx) - x^2 + y^2 = 0`

` 2xy (dy)/(dx) - x^2 - y^2 = 0`

`(x^2 + y^2) (dy)/(dx) - 2xy = 0`

None of the above



`(x^2 - y^2 ) (dy)/(dx) + 2xy = 0`

`(x^2 - y^2) (dy)/(dx) = 2xy`

`(x^2 - y^2) (dy)/(dx) = xy`

`(x^2 - y^2) (dy)/(dx) + xy = 0`
