

parallel to x-axis

parallel to y-axis

parallel to z-axis

equally inclined to all the axes



`( 0 , -7/2 , 5/2)`

`( 0 , 7/2 , 1/2 )`

`( 0 , -7/2 , -5/2)`

`( 0 , 7/2 , -5/2)`



`ae+cg-1=0`

`ae+ bf -1 = 0`

`ae+cg+1=O`

`ag+ce+ 1 = 0`



`< 2, - 5, 3 >`

`< 1, - 5, - 3 >`

`< 2,5, 3>`

`< 1, 3,5 >`



`2x+5y-2=0`

`5x+ 2y -5=0`

`x + z- 2 = 0`

`2x- y - 2z = 0`



` 2/sqrt(29)`

` 4/sqrt(29)`

` 5/sqrt(29)`

`1`



`(pm (12)/(13) , pm (4)/(13) , pm (3)/(13) )`

`( (12)/(13) , - (4)/(13) , (3)/(13) )`

`( (12)/(13) , - (4)/(13) , - (3)/(13) )`

`(- (12)/(13) , - (4)/(13) , (3)/(13) )`



are perpendicular

are parallel

intersect at an angle `45^0`

intersect at an angle `60^0`



`(1, 6, 4)`

`( -1, 6, -4)`

`(-1, -6, 4)`

`(2, -6, 4)`



`2`

`3`

`4`

`5`



`3, 6, 9`

`1, 2, 3`

`1, 4, 9`

`2, 4, 6`



`< 2,-1,2 >`

`< -2,1,2 >`

`< 2, 1, - 2 >`

`< - 2,- 1,- 2 >`



`x+2y+3z=1`

`3x+2y+z=3`

`2x+3y+6z=18`

`6x+3y+2z=18`



`(0, 5, 4)`

`(3,5, 0)`

`(3,0, 4)`

`(0, 0, 4)`



` sqrt(10) units`

` sqrt(14) units`

`4 units`

`5 units`



`(5, 2, 1)` units

`( (13)/5, ( 13)/2 ,13)` units

`( 5/(13) , 2 /(13) , 1/(13))` units

`(1, 2, 5)` units



`x + y = 3`

`x - y = -1`

`z = 3`

`x+2y+3z=14`



are collinear

form an equilateral triangle

form a scalene triangle

form a right-angled triangle



`(-1, 2,- 3)`

`(1,- 2, 3)`

`(1,2,-3)`

`(-1,-2,-3)`



`(0, - 4, -1)`

`(0, - 4, 1)`

`(1, 4, 0)`

`(0, 4, 1)`



`1 : 1`

`2: 3`

`3 : 4`

None of these



`(1, 0, 0)`

`(1, 0, 1)`

`(0, 0, 1)`

None of these



`< 1,0, 1 >`

` < 0, 1,0 >`

`< 1, 0, -1 >`

None of these



`< 2, 3, - 1 >`

`< 2, 3, 1 >`

`< -1, 2, 3 >`

None of these



`1 /sqrt(3)`

`1/sqrt(2)`

`2/sqrt(6)`

None of these



`30^0`

`60^0`

`90^0`

`120^0`



`< 1/2 , sqrt(3)/2 , 0 >`

`< 1/2 , - sqrt(3)/2 , 0 >`

`< 1/sqrt(2) , 1/sqrt(2) , 0 >`

`< -1/2 , sqrt(3)/2 , 0 >`



`< 4, - 4, 2 >`

`< 4, 4, 2 >`

`< -4, 4, 2 >`

`< 2, 1, 1 >`



`theta = 30^(circ)`

`theta = 45^(circ)`

`2 cos theta =1`

`3 cos theta =1`



`x^2 + y^2 + z^2 = 0`

`x^2 + y^2 + z^2 = 1`

`x^2 + y^2 + z^2 = 2`

`x^2 + y^2 + z^2 = 3`



`0`

`1/3`

`1`

`3`



`1` unit

`1.5` units

`2` units

`2.5` units



`0`

`1/3`

`1`

`3`



`3 sqrt(5)` sq units

`6 sqrt(5)`sq units

`6` sq units

`12` sq units



3 units

1 unit

0

None of these



`1/4`

`1/2`

`3/4`

`1`



`3`

`2`

`1`

`-1`



`pi/6`

`pi/4`

`pi/3`

`pi/2`



`I + m + n = 0`

`a + b + c = 0`

`a/l + b/m +c/n =0`

`al + bm + cn = 0`



1 unit

2 units

3 units

4 units



`(r cos alpha , 0, r sin alpha)`

`(0, 0, r sin alpha)`

`(r cos alpha , 0, 0)`

`(0, 0, r cos alpha)`



` (: 1/sqrt(3) , 1/sqrt(3) , 1/sqrt(3) :)`

` (: - 1/sqrt(3) , 1/sqrt(3) , 1/sqrt(3) :)`

` (: - 1/sqrt(3) , - 1/sqrt(3) , 1/sqrt(3) :)`

` (: 1/3 , 1/3 , 1/3 :)`



`pi/2`

`pi/3`

`pi/6`

None of these



`3x + 4y + 5z + 4 = 0`

`3x + 4y- 5z + 14 = 0`

`3x + 4y -· 5z + 4 = 0`

`3x + 4y- 5z- 4 = 0`



`(: 1,2,3 :)`

`(: 2,1,3 :)`

`(: 3,2,1 :)`

`(: 1,3,2 :)`



`(x-a)/1 = (y-b)/0 = (z-c)/0`

`(x-a)/0 = (y-b)/0 = (z-c)/1`

`(x-a)/0 = (y-b)/1 = (z-c)/0`

`(x-a)/0 = (y-b)/1 = (z-c)/1`



`1/2`

`1/3`

`2/3`

None of these



`0`

`1`

`3`

`2/(sqrt (26))`



4 units

5 units

6 units

12 units



`-1`

`0`

`1`

`2`



`pi/5`

`pi/4`

`pi/6`

`pi/3`



`sqrt (3/4)`

`sqrt (1/2)`

`sqrt (3/2)`

`1/3`



Only I

Only II

Both I and II

Neither I ror II



`(3, 2, 2)`

`(3, 7, 1)`

`(1, 2. 3)`

`(2, 1, -1)`



`90^(circ)`

`60^(circ)`

`45^(circ)`

`30^(circ)`



one point only in common

three points in common

infinite points in common

no points in common



`1`

`2`

`3`

`6`



`(sqrt (165))/2` sq units

`(sqrt (135))/2` sq units

`4` sq unit

`2` sq unit



`a + b + c = 0`

`a = b = c`

`al+ bm + cn= 0`

`I+ m + n = 0`



`6`

`12`

`15`

More than `15`



`24`

`12`

`6`

`3`



`cos^(-1) (1/2)`

`cos^(-1) (1/3)`

`cos^(-1) (1/sqrt(3))`

`cos^(-1) (2/sqrt(3))`



`cos^(-1) (1/2)`

`cos^(-1) (1/3)`

`cos^(-1) (1/sqrt(3))`

`cos^(-1) (2/sqrt(3))`



`cos^(-1) (1/sqrt(3))`

`cos^(-1) (2/sqrt(3))`

`cos^(-1) (sqrt(2/3))`

`cos^(-1) (sqrt(2)/3)`



`x cot theta + y = 0`

`x tan theta - y = 0`

`x + y cot theta = 0`

`x-y tan theta = 0`



`-1`

`1`

`-3`

`3`



`sqrt(3)`

`sqrt(6)`

`3`

None of these



`sqrt(3)`

`2`

`2 sqrt(2)`

`4`



`1`

`3`

`sqrt (11)`

`11`



`pi/4`

`pi/6`

`pi/3`

`pi/2`



`x^2 + y^2 + z^2 + 12x- 2y + 4z + 16 =0`

`x^2 + y^2 + z^2 + 12x - 2 y + 4z - 16 = 0`

`x^2 + y^2 + z^2 - 12x + 2y- 4z + 16 = 0`

`x^2 + y^2 + z^2 - 12x + 2y- 4z + 25 = 0`



`(-1, 3,2)`

`(-1,-3,2)`

`(2, 1, 3)`

`(2, 3,2)`



`cos^(-1) (1/5)`

`cos^(-1) (1/7)`

`sin^(-1) (1/5)`

`sin^(-1) (1/7)`



`u^2 + v^2 + w^2 = d^2`

`u^2 + v^2 + w^2 > d`

`u^2 + v^2 + w^2 < d`

`u^2 + v^2 + w^2 < d^2`



`pi/2`

`pi/3`

`pi/4`

`pi/6`



`x + y + z = 6`

`x=1`

` y+z =5`

`z+y =1`



`3`

`2`

`1`

`0`



`(1, 2, 3)`

`(2, 3, 1)`

`(3, 1, 2)`

`(1,3,2)`



`cos^(-1) (1/sqrt(2) )`

`cos^(-1) (1/sqrt(3) )`

`cos^(-1) (1/3 )`

`cos^(-1) (1/2 )`



`0`

`1`

`2`

`3`



`X`-axis

`Y`-axis

`Z`-axis

None of these



`x+ 2y + z = 6`

`x- 2y + z = 6`

`x + 2y- z = 6`

`x- 2y- z = 6`



`49`

`7`

`-49`

`-7`



an ellipse

a circle

a parabola

None of these



`alpha = beta = gamma =1`

`alpha = beta = gamma = 3/7`

`alpha = beta = gamma`

None of these



`4x + 3y- 5z = 0`

`4x + 5y- 4z = 0`

`4x + 4y- 5z = 0`

`5x + 4y- 5z = 0`



`theta < 30^(circ)`

`theta = 60^(circ)`

` 30^(circ) < theta < 60^(circ)`

`theta > 60^(circ)`



`x- z = 0`

`z + y = ()`

`3x + 2y = 0`

`3x + 2z = 0`



`alpha alpha' + beta beta' +1 =0`

`(alpha + alpha ') (beta + beta') =0`

`ll'+mm'+n n'= 1`

`ll'+mm'+n n' =0`



`5 :4`

`3:4`

`1:2`

`7:5`



Only I

Only II

Only Ill

Both II and1111



`ax + by+ cz = ax_1 + by_1 + cz_1`

`a(x + x_1)+ b(y+ y_1)+ c(z+ z_1)= 0`

`ax + by+ cz = 0`

`ax+ by+ cz = x_1 + y_1 + z_1 = 0`



`(-1, -7, 5)`

`(-1, 7, 5)`

`(-1/sqrt(75) , - 7/(sqrt(75) ) , 5/(sqrt(75)))`

`(-1/sqrt(75) , 7/(sqrt(75) ) , 5/(sqrt(75)))`



`(-3,- 4,- 5)`

`(3, 4, 5)`

`(3, 4, - 5)`

`(-3, 4,- 5)`



`1`

`3`

`3xyz`

`27xyz`



`x^2 + a^2 = 2c^2 - y^2- z^2`

`x^2 + a^2 = c^2 - y^2 - z^2`

` x^2 - a^2 = c^2 - y^2 - z^2`

`x^2 + a^2 = c^2 + y^2 + z^2`



at a point

at two points

at three points

in a line


Assertion : If `(: l, m, n :)` are directiod cosines of a line, there can be a line whose direction cosines are `(: sqrt ((l^2+m^2)/2) , sqrt((m^2+n^2)/2) , sqrt((n^2 +l^2)/2) :)`
Reason : The sum of direction cosines of a line is unity.
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`2x- 3y = 0`

`5x- 2z = 0`

`5y- 3z = 0`

`3x -2y= 0`
