

`2b- a sin (b- a)`

`a+ 3bcos (b- a)`

`sin a- (b- a) cos b`

`0`



`0`

`2`

`-2`

`pi`



`0`

`1/2`

`1`

None of these



`-3`

`2`

`3`

`5`



`pi/4`

`pi/2`

`(3pi)/4`

`pi`



`-19/6`

`19/6`

`3/2`

`-3/2`



`- pi`

`0`

`pi`

`2 pi`



`1`

`-1`

`0`

`e`



`pi`

`pi/3`

`pi/sqrt3`

`(2pi)/sqrt3`


Assertion : (A) `int_0^(pi) sin^7 xdx = 2int_0^(pi/2) sin^7 xdx`
Reason : (R) `sin^7 x` is odd function
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true




`(log x)^2`

`1/2 (log x)^2`

`(log x^2)/2`

None of these



`47//3`

`50//3`

`1//3`

`47//2`



` pi/8 log_e 2`

` pi/4 log_e 2`

` - pi/8 log_e 2`

`- pi/4 log_e 2`



`sqrt(2) (log sqrt(2))`

`sqrt(2) ( sqrt(2) + 1)`

`log ( sqrt(2) + 1)`

None of the above



`pi/2`

`pi`

`-pi/2`

None of the above



`I_1 = I_2`

`3I_1 = I_2`

`I_1 = 3I_2`

`I_1 = 5I_2`



` e^(pi/4) - 1`

` e^(pi/4) + 1`

` e - 1`

`e`



`2 ab`

`2pi ab`

` pi/(2 ab)`

`pi/(ab)`
