

`1/2`

`1`

`sqrt3`

None of the above



`int_0^a g(x) dx`

`int_0^a f(x) dx`

`2 int_0^a f(x) dx`

`0`



`3/2`

`5/2`

`3`

`4`



`1/6`

`1/3`

`5/18`

`5/36`



`37/72`

`2/3`

`17/72`

`37/144`



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



`-1`

`0`

`1`

`2`



`0`

`1`

`2`

`4`



`-3`

`2`

`3`

`5`



`0`

`2`

`4`

`8`



`( x+secx) e^(sinx)+C`

`(x- secx) e^(sinx)+C`

`(x+tanx)e^(sinx)+C`

`(x-tanx)e^(sinx)+C`



`1/4`

`1/2`

`1`

`2`



`(-232)/5`

`(-116)/5`

`(116)/5`

`(232)/5`



`0`

` 2/3`

`2`

` -2`



`2b- a sin (b- a)`

`a+ 3bcos (b- a)`

`sin a- (b- a) cos b`

`0`



`| b|- |a|`

`| a|- |b|`

`(| b|) /(|a|)`

`0`



`8/(15)`

`(16)/(15)`

`(32)/(15)`

`0`



`0`

`1`

`m`

`2m`



Only I

Only II

Both I and II

Neither I nor II



`A = 2B`

`B = 2A`

`A= B`

`A = 3B`



`pi/4`

`pi/2`

`(3pi)/4`

`pi`



`0`

`2`

`-2`

`pi`



`In 2`

`- In 2`

`0`

None of these



` e^(pi/4) - 1`

` e^(pi/4) + 1`

` e - 1`

`e`



`0`

` 2 I_1`

`pi`

None of these



` pi/(24)`

` pi/(18)`

` pi/(12)`

` pi/(6)`



`2 ab`

`2pi ab`

` pi/(2 ab)`

`pi/(ab)`



`tan x - (tan^3 x)/3 + 4x`

`tan x + (tan^3 x)/3 + 4x`

`tan x + (sec^3 x)/3 + 4x`

`- tan x - (tan^3 x)/3 + 4x`



`- pi`

`0`

`pi`

`2 pi`



`pi`

`pi/2`

`0`

`2 pi`



`1`

`2`

`4`

`-2`



`4I`

`2I`

`I`

`I/2`



`I/2`

`I`

`2I`

`4I`



`pi/2`

`pi/4`

`pi/8`

None of these



`a`

`2a`

`0`

`1`



`1`

`-1`

`0`

`e`



`pi/4`

`pi/8`

`pi^2/8`

`pi^2/32`



`2`

`1`

`pi`

`0`



`k = 3`

`0 le k < 3`

`k le 4`

`k = 0`



`1/n`

`1/(n-1)`

`n/(n-1)`

`1/(n-2)`



`pi`

`pi/3`

`pi/sqrt3`

`(2pi)/sqrt3`



`0`

`int_0^(pi/2) f(cosx)dx`

`2int_0^(pi/2) f(cosx)dx`

`1`



`2 ln sqrt3`

`ln sqrt3`

`2 ln 3`

`4 ln 3`



`e(e/2-1)`

`e(e-1)`

`e-1/e`

`0`



`1`

`0`

`2`

`-1`



`pi`

`pi/2`

`pi/4`

`0`



`x^3/3-x+4 tan^(-1) x+C`

`x^3/3+x+4 tan^(-1)+C`

`x^3/3-x+2 tan^(-1) x+C`

`x^3/3-x-4 tan^(-1) x+C`



`1/3` and `-1/9`

`3` and `-9`

`3` and `9`

`3` and `3`



`x-log x +C`

`x-log (tan x)+C`

`x-log(1+e^x)+C`

`log (1+e^x)+C`



Values of x only

Values of each of a, b and c

Value of c only

Value of b only



`1/2` and `2`

`-1/2` and `2`

`1/2` and `-2`

`-1/2` and `-2`



`(e-1)/2`

`e^2-1`

`2(e-1)`

`e-1`



`ln (ex + 1) + C`

`ln (e^(-x) + 1) + C`

`-ln (e^(-x) + 1) + C`

`-(ex + 1) + C`



`tan theta+c`

`cot theta+C`

`1/2 tan theta+C`

`1/2 cot theta+C`



`1/110`

`1/111`

`1/112`

`1/119`



`(35 pi)/256`

`70/256`

`16/35`

`(8pi)/35`



`e^2`

`1/e`

`ln4`

`1`



`-19/6`

`19/6`

`3/2`

`-3/2`


Assertion : (A) `int_0^(pi) sin^7 xdx = 2int_0^(pi/2) sin^7 xdx`
Reason : (R) `sin^7 x` is odd function
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true