

`m=2` and `n=±1`

`m=±2` and `n=-1`

`m = 2` and `n = -1`

`m = ±2` and `n = 1`



`2 vec(OP)`

`4 vec(OP)`

`6 vec(OP)`

`8 vec(OP)`



`vec(BA)+vec(CD) = vec(AC)+vec(DB)`

`vec(BA)+vec(CD) = vec(BD)+vec(CA)`

`vec(BA)+vec(CD) = vec(AC)+vec(BD)`

`vec(BA)+vec(CD) = vec(BC)+vec(AD)`



`veca , vecb , vecc` are orthogonal inpairs and `|veca| = | vec c|` and `|vecb| = 1`

`veca , vecb , vecc` are non-orthogonal to each other

`veca , vecb , vecc` are orthogonal in pairs but `|veca| ne | vecc||`

`veca , vecb , vecc` are orthogonal in pairs but `| vecb| ne 1`



`veca , vecb , vecc` are orthogonal inpairs and `|veca| = | vec c|` and `|vecb| = 1`

`veca , vecb , vecc` are non-orthogonal to each other

`veca , vecb , vecc` are orthogonal in pairs but `|veca| ne | vecc||`

`veca , vecb , vecc` are orthogonal in pairs but `| vecb| ne 1`



`2`

`3`

`4`

`5`



`7/2` sq units

`4` sq units

`(11)/2` sq units

`7` sq units



`(3 ( hati+hatj))/2`

`(2 ( hati+hatj))/3`

`((hati+hatj))/2`

`((hati+hatj))/3`



1 only

2 only

Both 1 and 2

Neither 1 nor 2



`(-4hat i + 3hat j - hat k)/sqrt(26)`

`(-4hat i + 3hat j + hat k)/sqrt(26)`

`(-3hat i + 2hat j - hat k)/sqrt(26)`

`(-3hat i + 2hat j - hat k)/sqrt(14)`



`5 sqrt(5)` sq units

`4 sqrt(5)` sq units

`5 sqrt(3)` sq units

`15 sqrt(2)` sq units



` (| hata - hatb |)/2`

` (| hata + hatb |)/2`

` (| hata - hatb |)/4`

` (| hata + hatb |)/4`



` (| hata - hatb |)/2`

` (| hata + hatb |)/2`

` (| hata - hatb |)/4`

` (| hata + hatb |)/4`



19 units

17 units

15 units

13 units



`12` sq units

`12.5` sq units

`25` sq units

`156.25` sq units



`4(c- b)`

`- 4(c- b)`

`4c - 3b`

`4c + 3b`



`pm 8`

`pm 12`

Only `8`

Only `12`



`72`

`64`

`48`

`36`



`1/2` unit

`1` unit

`2` units

`3` units



arithmetic mean of `alpha` and `beta`

geometric mean of `alpha` and `beta`

harmonic mean of `alpha` and `beta`

None of the above



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



`6` sq units

`5` sq units

`4` sq units

`3` sq units



`23` units

`19` units

`18` units

`21` units



`x = 2, y = 1`

`x = 1, y = 2`

`x = -2 , y = 1`

`x = -2 , y = - 1 `



`a = lamda b` for some scalar `lamda`.

`a` is parallel to `b`

`a` is perpendicular to `b`

`a = b = 0`



`5 sqrt(6)` sq units

`(5 sqrt(6))/2` sq units

`sqrt(6)` sq units

`sqrt(30)` sq units



`( hat i + hat j)/sqrt(2)`

`hat k`

`(hat j + hat k)/sqrt(2)`

`( hat i - hat j)/sqrt(2)`



`60^0`

`45^0`

`30^0`

`15^0`



` -1/3 `

` 1/3 `

`2/3`

`1`



`(11)/(12)`

`(13)/(14)`

`- (11)/(12)`

`- (13)/(14)`



`7`

`8`

`10`

`11`



`6sqrt(2)` sq units

`3sqrt(2)` sq units

`10sqrt(3)` sq units

None of these



`1`

`(19)/9`

`(17)/9`

`(23)/9`



`-10 i - 3 j + 4 k`

`-10 i + 3 j + 4 k`

`10 i - 3 j + 4 k`

None of the above



`2sqrt(2)`

`2sqrt(10)`

`5`

`10`



`pi/2 `

`pi/3`

`pi/6 `

None of these



`0`

`2`

`-2`

None of these



`i`

`-j`

`j`

`k`



`11`

`9`

`7`

`6`



hyperbola

ellipse

parabola

Circle



`1`

`2`

`3`

`6`



5 units

7 units

11 units

49 units



`8`

`6`

`4`

`2`



`3i +2j`

`- 3i +2j`

`2i -3j`

`-2i +3j`



`vecalpha`

`3vecalpha`

`-vecalpha`

`0`



`a= b`

The angle between `a` and `b` is `45^0`

`a` is parallel to `b`

`a` is perpendicular to `b`



`1`

`2`

`3`

`4`



`i + j- k`

`i- j + k`

`i- j- k`

None of these



`0`

`1/2`

`1`

`2`



`3`

`1.5`

`sqrt2`

`sqrt3`



`pi/4`

`pi/3`

`(2pi)/3`

`pi/2`



`1`

`2`

`3`

`4`



Only I

Only II

Both I and II

Neither I nor II



`(1, 1/2,-1/2)`

`(2/3, 1/3, -1/3)`

`(1 / 2, 1 / 4, - 1 / 4)`

`(1. 1, 0)`



`j`

`yj-xk`

`yi-xj`

`x i-yj`



`a * b`

`a · b`

`a · b`

`| axx b|`



`± (3 i + 4j)/5`

`± (4i +3j)/5`

`± (3i- 4j)/5`

`± (41- 3j)/5`



`-ai- bj`

`ai- bj`

`-ai + bj`

`bi- aj`



`1/5`

`1/sqrt5`

`1/29`

`1/sqrt(29)`



`1`

`2`

`3`

`4`



`3`

`2`

`1`

`0`



square

rhombus

rectangle

None of these



`5i- j- 5`

`5i + j + 5k`

`-5i - j + 5k`

`5i + 5j- k`



`4`

`6`

`8`

`10`



a is parallel to b

;a is perpendicular to b

a is equal to b

Both a and b are unit vectors



`106`

`-106`

`53`

`-53`



a x b is equal to 0

b x c is parallel to a x b

a x b is perpendicular to b x c

(a x b)+ (b x c)+ (c x a) is equal to 0



`2i + 3j- k`

`2i- 3j- k`

`3i + j + k`

`0`


Assertion : (A) The work done when the force and displacement are perpendicular to each other is zero.
Reason : (R) The dot product `A· B` vanishes, is the vectors A and B are perpendicular.
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`f(x)=(40//x)+2x^ 2`

`f(x)=(40//x)+x ^2`

`f(x)=(40//x)+ x`

`f(x) =(60//x)+ 2x`



`1/sqrt(14) (-2 , -3 ,1)`

`1/sqrt2 (1 , 0 , 1)K`

`1/sqrt(42) (-5 ,-4 , -1)`

None of these



`lamda = 0`

`lamda = 1`

`lamda < 1`

`lamda > 1`



`2a - (p- q)`

`{p- q)- 2a`

`a - (p - q)`

`a/2 -(p-q)/2`



`10`

`5`

`8`

`-8`



`2`

`0`

`-1`

`1`



volume of a parallelopiped

volume of a tetrahedron

volume of an ellipsoid

None of the above



`0`

`2`

`1`

`1/2`



`1`

`-1`

`2`

None of these



`0`

`1`

`sqrt2`

`1/2`



`|a+b| < 1`

`|a+b| > 1`

`|a-b| < 1`

`|a - b| > 1`



`(2,0)`

`(0, 2)`

`(-2, 0)`

`(0, - 2)`



`2 (a xx b)`

`-2 (a xx b)`

`(a xx b)`

`-(axx b)`



`lamda = pm 1`

`a = |lamda|`

`a = 1/(|lamda|)`

` a = 1/lamda`



I anci II

II and Ill

I and Ill

I, II and Ill



`1`

`2`

`3`

`4`



A circle

An ellipse

A parabola

a straight line



`1`

`2`

`3`

`4`



`a^2+b^2`

`2(a^2+b^2)`

`4(a+b^2)`

`4ab`



parallel to both a + b and a - b

normal to a -band parallel to a + b

normal to a +band parallel to a - b

normal of both a +band a - b



Vector product is commutative

Vector product is not associative

Vector product is distributive over addition

Scalar product is commutative



`0`

`1`

`2`

`-2`



`a · b = b · c = c · a ne 0`

`a · b = 0`

`b · c= 0`

`a · b = b · c = c · a = 0`



`-2`

`pm2`

`3`

`pm3`



I and II

I and Ill

Only I

Only II



0 unit

30 units

40 units

50 units



I and II

I and Ill

II and Ill

I, II and Ill



m takes 1 value and n takes 1 value

m takes ·, value and n takes 2 values

m takes 2 values and n takes 1 value

m takes 2 values and n takes 2 values



`1`

`1/2`

`2/3`

`2`



`2a - b`

`2b-a`

`a - 2b`

`a - b`



`3/4`

`4/3`

`9/16`

`3/5`
