

`1/2`

`1/4`

`1/3`

`1/6`



`1//4`

`1/(36)`

`1//6`

`1//8`



`P(A cup B) ge 3/4`

`P(A' cap B) le 1/4`

`3/8 le P(A cap B) le 5/8`

All of the above



`1//2`

`1//6`

`1//3`

`5//9`



`0.07`

`0.08`

`0.09`

`0.12`



`2//7`

`3//7`

`4//7`

`5//7`



`4/(15)`

`8/(45)`

`1/3`

`2/9`



`1/5`

`2/5`

`3/5`

`4/5`



` 5/(12)`

`7/(18)`

`(13)/(36)`

`(11)/(36)`



`2/3`

`1/4`

`1/8`

`1/2`



`7//13`

`11//15`

`12//13`

`15//14`



` 9 /(10)`

` 8 /(10)`

` 7 /(10)`

` 3 /5`



`1/(12) xx 4/(51)`

`1/(52) xx 1/(51)`

`1/(13) xx 1/(13)`

`1/(13) xx 1/(17)`



`169//425`

`261//425`

`104//425`

`425//169`



`1//24`

`1`

`23//24`

`9//2`



`2/3`

`3/5`

`1/2`

`2/5`



` (1/(36))^n`

` 1 - ((35)/(36))^n`

` (1/(12))^n`

None of these



`1//5`

`7//13`

`5//13`

`7//10`



`13/32`

`1/4`

`1/32`

`3/16`



`3/5`

`2/5`

`1/5`

`2/7`



`5//21`

`16//21`

`15//84`

`69//84`


Assertion : If A and B be mutually exclusive events in a sample space such that `P(A) = 0.3` and `P(B) = 0.6`, then `P(bar A cap bar B) = 0.28`
Reason : If A and B are mutually exclusive events, then `P (A cap B) = 0`
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


`1 - P(A//B)`

`1- P(bar A // B)`

`(1 - P(A cup B))/(P ( bar B))`

`(P ( bar A))/(P ( bar B))`



`3/(28)`

`2/(28)`

`7/(28)`

`5/(28)`



`1/6`

`3/8`

`5/8`

`5/6`





`1/(10)`

`1/9`

`1/5`

`1/2`



`[ .30, .80 ]`

`[.35, .75]`

`[.4,.70]`

`[ .45, .65]`



I and II

I and III

II and III

I, II and III



`(11)/( 12)`

`7/( 12)`

`5/( 12)`

`1/2`



`2/5`

`2/3`

`3/5`

`7/9`



`5/12`

`3/8`

`5/8`

`1/4`





`3/7`

`4/7`

`2/7`

None of theses



`p = q = 1`

`p = q = 1/2`

` p = 0, q = 1`

infinitely many values of the pairs `(p, q)`



Only I

Only II

Both I and II

Neither I nor II



`1/64`

`1/32`

`1/16`

`1/8`



`2/3`

`7/12`

`5/6`

`3/4`



`4/13`

`15/52`

`18/52`

None of these



`59/91`

`44/91`

`51/91`

`32/91`



`5/12`

`3/8`

`5/8`

`1/4`



`3/32`

`3/16`

`29/32`

None of these



`P(A cap B^c)= P(B) -P(A)`

`P(A cap B^c)= P(A)- P(B)`

`P(B) le P(A)`

`P(A) ge P(B)`



Both I and II

Both I and III

Both II and III

I, II and III



`5/6`

`1/2`

`2/3`

None of the above


(This question may have multiple correct answers)


(This question may have multiple correct answers)



`1/4`

`1/8`

`3/4`

`1/2`



`0.08`

`0.02`

`0.8`

`0.2`



`4//5`

`1//5`

`7//20`

`3//20`



`3/7`

`1/2`

`1/(11)`

`1/6`



`35/324`

`5/216`

`11/216`

`11/432`



`5`

`3`

`4`

`6`



`3/5`

`2/5`

`1/5`

`2/7`



`1/3`

`6/(19)`

`(20)/(57)`

`2/5`



`(3p)/(4p+3)`

`(5p)/(3p+2)`

`(5p)/(4p+1)`

`(4p)/(3p+1)`



`(12)/3^8`

`(70)/3^8`

`(1120)/3^8`

`(70)/3^(12)`



`9/41`

`25/128`

`1/5`

`27/128`
