

`pi/3`

`pi/2`

`(3 pi)/2`

`pi`



`5`

`3`

`2`

`1`



`(3a^2)/4`

`a^2/2`

`(3 sqrt 3 a^2)/4`

`(sqrt 3 a^2)/4`



`f(x)` fluctuates in the interval

`f(x)` increases in the interval

`f(x) ` decreases in the interval

None of the above



`f(x)` is increasing in `(- oo , 1/2)` and decreasing in `(1/2 ,oo) `

`f(x)` is decreasing in `(- oo , 1/2)` and increasing in `(1/2 ,oo) `

`f(x)` is increasing in `(- oo, 1/2)` and dicreasing in `(1, oo)`

`f(x)` is decreasing in `(- oo, 1)` and increasing in `(1, oo)`



`f(x)` has local minima at more than one point in `(-oo , oo)`

`f(x)` has local maxima at more than one point in `(-oo , oo)`

`f(x)` has local minima at one point only in`(-oo , oo)`

`f(x)` has neither maxima nor minima in `(-oo , oo)`



None

One

Two

Three



None

One

Two

Three



`1`

`2`

`3`

`4`



`0`

`1`

`2`

`3`



It has local maximum at x = 0.

It has local minimum at x = 0.

It has neither maximum nor minimum at x= 0

It has maximum value 1.



1 only

2 only

Both 1 and 2

Neither 1 nor 2



1 and 2 only

2 and 3 only

1 and 3 only

1 , 2 and 3



`0`

`2x-1`

`4x-2`

`8x-4`



1 only

2 only

Both 1 and 2

Neither 1 nor 2



`0`

`2x-1`

`4x-2`

`8x-4`



`f(x)` is a strictly decreasing function in ( 0 , x)

`f(x)` is a strictly increasing function in ( 0 , x)

`f(x)` is neither increasing nor decreasing function in ( 0 , x)

`f(x)` is not decreasing in ( 0 , x)



1 only

2 only

Both 1 and 2

Neither 1 nor 2



Only I

Only II

Both I and II

Neither I nor II



`-1`

`0`

`1`

`2`



`0`

`1/2`

`-1`

`2`



Only `1`

Only `2`

Both `1` and ` 2`

Neither `1` nor `2`



`x < 0` only

`x > 2` only

`0 < x < 2`

`x in (- oo,0) cup (2,oo)`



`1`

`3`

`7`

`9`



Only I

Only II

Both I and II

Neither I nor II



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



`e`

`sqrt(e)`

`1/sqrt(e)`

`1/e`



`e`

`e ^(2/e)`

`e ^(1/e)`

`1/e`



`(- 2, -1)`

`(-oo,- 2)`

`(- 1, 2)`

`(-1, oo)`



`(- 2,- 1)`

`(- oo,- 2)`

`(-1,oo)`

`(- oo,- 2) cup (- 1, oo)`



`1/2`

`1/3`

`2`

`3`



`1//2`

`1//3`

`2`

`3`



`0`

`1`

`2`

None of these



`0`

`1`

`2`

`4`



`(1, 0)`

`(2, 0)`

`(-1//2, 0)`

`(1//2, 0)`



` (2r)/sqrt(3)`

` 1/sqrt(3)`

`2r`

` sqrt(3)r`



` (2r)/sqrt(3)`

` sqrt(2r)/sqrt(3)`

`r`

`sqrt(3) r`



1 inch

1.5 inch

2 inch

2.5 inch



`x=0`

`x=2`

`x=4`

`x=-4`



`x=0`

`x=1`

`x=2`

`x=4`



`-1/e`

`1/e`

`-e`

`e`



Only I

Only II

Both I and II

Neither I nor II



`e^x` is an increasing function

`e^x` is a decreasing function

`e^x` is neither increasing nor decreasing function

`e^x` is a constant function



`-1`

`0`

`1`

`2`



`x=e^(-2)`

`x=e`

`x=e^(-1)`

`x=2e^(-1)`



square of radius

square root of radius

inversely proportional to radius

cube of the radius



`pi/4`

`pi/2`

`pi`

`(3 pi)/2`



`(0, 3)`

`(3, 6)`

`(6, 9)`

None of these



fog is always an increasing function

fog is always a decreasing function

fog is neither an increasing nor a decreasing function

None of the above



`(dy)/(dx)` must be zero

`(d^2y)/(dx^2)` must be zero

`(dy)/(dx)` must be non-zero

`(d^2y)/(dx^2)` must be non-zero



`(- 2, -1)`

`(-oo,- 2)`

`(- 1, 2)`

`(-1, oo)`



`(- 2,- 1)`

`(- oo,- 2)`

`(-1,oo)`

`(- oo,- 2) cup (- 1, oo)`



`1/2`

`1/3`

`2`

`3`



`1//2`

`1//3`

`2`

`3`



`0`

`1`

`2`

None of these



`0`

`1`

`2`

`4`



`(1, 0)`

`(2, 0)`

`(-1//2, 0)`

`(1//2, 0)`



` (2r)/sqrt(3)`

` 1/sqrt(3)`

`2r`

` sqrt(3)r`



` (2r)/sqrt(3)`

` sqrt(2r)/sqrt(3)`

`r`

`sqrt(3) r`



1 inch

1.5 inch

2 inch

2.5 inch



`x=0`

`x=2`

`x=4`

`x=-4`



`x=0`

`x=1`

`x=2`

`x=4`



`-1/e`

`1/e`

`-e`

`e`



Only I

Only II

Both I and II

Neither I nor II



`e^x` is an increasing function

`e^x` is a decreasing function

`e^x` is neither increasing nor decreasing function

`e^x` is a constant function



`-1`

`0`

`1`

`2`



`x=e^(-2)`

`x=e`

`x=e^(-1)`

`x=2e^(-1)`



square of radius

square root of radius

inversely proportional to radius

cube of the radius



`pi/4`

`pi/2`

`pi`

`(3 pi)/2`



`(0, 3)`

`(3, 6)`

`(6, 9)`

None of these



fog is always an increasing function

fog is always a decreasing function

fog is neither an increasing nor a decreasing function

None of the above



`(dy)/(dx)` must be zero

`(d^2y)/(dx^2)` must be zero

`(dy)/(dx)` must be non-zero

`(d^2y)/(dx^2)` must be non-zero
