

`sin 3A`

`cos 3A`

`sin A+ cos A`

`3`



`- cosec quad 88^0`

`- cosec quad 2^0`

`- cosec quad 44^0`

`- cosec quad 46^0`



`2`

`1`

`1/2`

`0`



` (sqrt(5) - 1) /4 `

` (sqrt(5) + 1) /4 `

` sqrt(10 + 2sqrt(5))/4`

` sqrt(10 - 2sqrt(5))/4`



` pi/6`

`pi`

`pi/2`

`pi/4`



`sin 47^0`

`cos 47^0`

`2 sin 47^0`

`2 cos 47^0`



`pi`

`pi/3`

`pi/2`

`pi/4`



`b/a`

`a/b`

`ab`

`1`



`1//4`

`1//2`

`1`

`4`



` pi/(12)`

`pi/6`

`pi/4`

`pi/3`



`1`

`2`

`-1`

`-2`



`3`

`5`

`10`

`-5`



`5`

`8`

`10`

`-10`



`60^o`

`45^o`

`30^o`

None of these



`60^0`

`45^0`

`30^0`

None of these



`0`

`1`

`2`

`3`



`2/3`

`3/2`

`2`

`1`



`I < IV < II < Ill`

`IV < II < I < Ill`

`IV < II < Ill < I`

`I < IV< Ill < II`



`c/(c^2-1)`

`c/(c^2+1)`

`(c^2-1)/(c^2+1)`

None of these



`0`

`1`

`2`

`4`



`sin A`

`cos A`

`tanA`

`0`



`0`

`1`

`2`

`-1`



`(sqrt3+1)/(sqrt3-1)`

`(sqrt3+1)/(1-sqrt3)`

`(sqrt3-1)/(sqrt3+1)`

`(sqrt3+2)/(sqrt3-1)`



`1`

`x`

`0`

`2`



`-2`

`0`

`1`

`2`



`(sqrt3-1)/(2sqrt2)`

`(sqrt3+1)/(2 sqrt2)`

`(sqrt3-1)/(sqrt3+1)`

`(sqrt3+1)/(sqrt3-1)`



`1`

`2`

`4`

None of these



`5/13`

`12/13`

`-12/13`

`-13/12`



`1`

`-1`

`-sqrt2`

`-sqrt3`



Only I

Only II

Both I and II

Neither I nor II



first quadrant

second quadrant

third quadrant

fourth quadrant



`(30^0)/pi`

`(60^0)/pi`

`60^0`

None of these



`135^0`

`90^0`

`75^0`

`60^0`



`2-sqrt3`

`2+sqrt3`

`sqrt2-sqrt3`

`sqrt3-sqrt2`



`0`

`sqrt3/2`

`1/2`

`1/sqrt2`



`1`

`2`

`4`

`10`



`1/2`

`1/sqrt2`

`sqrt3/2`

`1/3`



`8/17`

`8/15`

`15/17`

`23/32`



`1/3`

`2/3`

`1`

`-1`



`pi/6`

`pi/3`

`pi/4`

`pi/8`



`-1`

`0`

`1`

`2`



`0`

`1/2`

`1`

`2`



`0`

`1`

`2`

`2(sinA+sinB)`



`0`

`1`

`2`

`-1`



Only I

Only II

Both I and II

Neither I nor II



-1

`0`

`1`

Infinity



`1`

`0`

`cos^2 theta`

`2 sintheta`



`7-4sqrt3`

`7+4 sqrt3`

`7+2sqrt3`

`7+6sqrt3`



`2 tan x`

`2 cosec x`

`2 cos x`

`2 sin x`



`1`

`2`

`3`

`4`



`-1`

`0`

`1`

`2`



`-1`

`0`

`1`

`3`



`1`

`2`

`3`

`4`



`|a| le 4`

`|a| le 2`

`|a| le sqrt3`

None of these



`1/y-1/x`

`1/x-1/y`

`1/x+1/y`

`-1/x-1/y`



`1`

`2`

`3`

`4`



`0`

`1`

`2`

None of these



`30^0`

`45^0`

`60^0`

`90^0`



`3sin alpha`

`(2 sin alpha)/3`

`(sin alpha)/3`

`2 sin alpha`



`(sintheta+costheta-1)/(sintheta+costheta+1)`

`(sintheta+costheta+1)/(sintheta+costheta-1)`

`(sintheta-costheta-1)/(sintheta+costheta+1)`

`(sintheta-costheta+1)/(sintheta+costheta-1)`



`sec 18^0`

`cosec 18^0`

`-sec 18^0`

`-cosec 18^0`



`0`

`1`

`2`

`3`



`1`

`1/sqrt2`

`sqrt3/2`

`0`



`(mn)/(m^2+n^2)`

`(2mn)/(m^2+n^2)`

`(m^2+n^2)/(2mn)`

`(mn)/(m+n)`



`1/4`

`1/8`

`1/16`

`1`



`0`

`1`

`-1`

None of these



`sin 1^0 > sin 1`

`sin 1^0 < sin 1`

`sin 1^0 =sin 1`

`sin 1^0 = pi/180 sin1`



`0`

`pi/4`

`pi/2`

`pi`



`-cot(x/2)`

`cot(x/2)`

`tan(x/2)`

`-tan(x/2)`



`1`

`1/sqrt2`

`1/sqrt3`

`sqrt3`



`1/4`

`4`

`2`

`1`



`sqrt6 + sqrt3 - sqrt2 + 2`

`sqrt6 + sqrt3 + sqrt2 + 2`

`sqrt6 - sqrt3 + sqrt2 - 2`

`sqrt6 + sqrt3 + sqrt2 - 2`



`1/4`

`1/2`

`1/3`

None of these



`1/4`

`sqrt3/2`

`-1/4`

`-3/4`



`225^0`

`240^0`

`210^0`

None of these



`sqrt3`

`2sqrt3`

`4`

`2`



`0`

`1`

`-1`

`tan A tan B tan C`



`8`

`7`

`4`

`3`



`-1`

`1`

`1/3`

`3`



Only I

Only II

Both I and II

Neither I nor II



`(5pi)/6`

`(2pi)/3`

`(3pi)/4`

`(11pi)/12`



`-4`

`-p^2` tor some odd prime `p`

`(-q/p)` where `p` is an odd prime and `q` is a positive integer with `(q/p)` not an integer

`-p` for some odd prime `p`



`1`

`-1`

`-1/2`

`1/2`



`4`

`3`

`2`

`1`


| Column I | Column II | ||
|---|---|---|---|
| (A) | `tan15^0` | (1) | `-2-sqrt3` |
| (B) | `tan75^0` | (2) | `2+sqrt3` |
| (C) | `tan105^0` | (3) | `-2+sqrt3` |
| (4) | `2-sqrt3` | ||

`A -> 4 , B -> 1 , C -> 2`

`A -> 4 , B -> 2 , C -> 1`

`A -> 3 , B -> 2 , C -> 1`

`A -> 2 , B -> 1 , C -> 4`



P is finite and positive

P is finite and negative

P = 0

P is not defined



`(5pi)/12`

`pi/3`

`pi/6`

`pi/4`



`cos(2theta) = cos(2phi)-1`

`cos(2theta) = cos(2phi)+1`

`cos(2theta) = [(cos(2phi)-1)/2]`

`cos(2theta) = [(cos(2phi)+1)/2]`



`45^0, 30^0`

`30^0 , 45^0`

`15^0 , 60^0`

`45^0 , 15^0`



`pi/6`

`pi/4`

`pi/3`

`pi/2`



`-1`

`0`

`1`

`2`



`cosA`

`cos(2A)`

`2cos(A/2)`

`sqrt(2cosA)`



`1`

`1/2`

`1/sqrt2`

`sqrt3/2`



identity for only one value of `phi`

not an identity

identity for all values of `phi`

None of the above



`1/2(sqrt(2-sqrt3))`

`1/2(sqrt(2+sqrt3))`

`sqrt2+sqrt3`

`sqrt2-sqrt3`



`1`

`2`

`4`

Many


Assertion : Let `X= {theta = [0, 2pi] sintheta = cos theta}` (A) The number of elements in `X` is `2`.
Reason : (R) `sin theta` and `cos theta` are both negative both in second are fourth quadrants
Both A and R individually true and R is the correct explanation of A
Both A and R are individually true but R is not the correct explanation of A
A is true but R is false
A is false but R is true


1 rad

2 rad

3 rad

4 rad



an irrational number and is greater than 1

a rational number but not an integer

an integer

an irrational number and is less than 1



`1`

`-1`

`1/2`

`2`



`tan35^0`

`tan10^0`

`1/sqrt2`

`1`



`pi/6`

`pi/4`

`pi/3`

`pi/2`



`sin2pi : sin(-pi)`

`tan45^0 : tan(-315^0)`

`cot(tan^(-1) 0.5) : tan(cot^(-1) 0.5)`

`tan420^0 : tan(-60^0)`



`(sqrt3+1)/2`

`(sqrt6+sqrt2)/4`

`(sqrt3+sqrt2)/4`

`(sqrt6+1)/2`



Ill > II > I

I > II > Ill

I > Ill > II

Ill > I > II



`1`

`2sin(alpha-beta)`

`sin(alpha-beta)`

`3sin(alpha-beta)`



`1`

`-1`

`0`

`2`



`sin^2 theta + cos^6 theta = sin^6 theta + cos^2 theta`

`cosec^2 theta + cot^6 theta = cosec^6 theta + cot^2 theta`

`sin^2 theta - cos^4 theta = sin^4 theta + cos^2 theta`

`cosec^2 theta + cot^4 theta = cosec^4 theta + cot^2 theta`



`B = npi + A`

`A = 2npi - B`

`A = 2npi + B`

`B = npi - A`



`0`

`1/4`

`8`

`4`



`0`

`1`

`2`

`3`



`0`

`1`

`-1`

`oo`



`0`

`sin A + sin B + sin C`

`cos A + cos B + cos C`

`1`



`0`

`pi/4`

`pi/6`

`pi/3`



`sqrt6+sqrt2`

`-sqrt6+sqrt2`

`sqrt6-sqrt2`

`-sqrt6-sqrt2`



`2 tan beta+tangamma = tanalpha`

`tanbeta+2tangamma = tanalpha`

`tanbeta+tangamma = tanalpha`

`2(tanbeta+tangamma) = tanalpha`
