

`(-3, -2] cup [2, 3)`

`(- 3, 3)`

`[- 3, -2] cup [2, 3]`

None of the above



`p^2 m = l^2q`

`m^2p = l^2q`

`m^2p = q^2l`

`m^2p^2 = l^2q`



Both the roots are real

One root is real and the other is complex

Both the roots are complex

Cannot say



`(c - 1)/b`

`(1 - c)/b`

`b/(c - 1)`

`b/(1 - c)`



AP

GP

HP

None of the above



`- 2 < k < 2 `

`-5 < k < 3`

`-3 < k < 5`

`-1 < k < 3`



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



` |P| < 4`

` |P| <= 4`

` |P| > 4`

` |P| >= 4`



One

Two

Three

Four



` - 9/8`

`9/8`

`- 8/9`

`8/9`



`x^ 2 - 10 x + 9 = 0`

`x^ 2 + 10 x + 9 = 0`

`x^ 2 - 10 x + 16 = 0`

`x^ 2 - 8 x - 9 = 0`



`4`

`3`

`2`

`1`



`6`

`7`

`10`

`20`



`- 3/4`

`3/4`

` - 4/3`

` -4/5`



exactly one real root

at least one real root

at least two real roots

at most two real roots



`4096`

`2048`

`1024`

`512`



`x^2 - 6ax + 9a^2 - b = 0`

`3ax^2 + x - sqrt(b) = 0`

`x^2 + 3ax + sqrt(b) = 0`

` sqrt(b)x^2 + x - 3a = 0`



One

Two

Four

No real root



`-1`

`0`

`1`

`2`



are imaginary

are distinct and real

are equal and real

Cannot be determined



`2`

`3`

`5`

`8`



Only `b <= -4`

Only `b >= 4`

`-4 < b < 4`

`b <= - 4, b >= 4`



`1, 2`

`1, 1`

`1, 0`

`2, 2`



`x^2 - (b^2 - 2ac) x + c = 0`

`a^2x^2 - (b^2 - 2ac)x + c = 0`

`ax^2 - (b^2 - 2ac)x + c^2 = 0`

`a^2x^2 - (b^2 - 2ac)x + c^2 = 0`



`8 ac = 25b`

`8ac = 9b^2`

`8b^2 = 9ac`

`8b^2 = 25ac`



one real root

two real roots

two imaginary roots

four real roots



`0`

`1`

`2`

`3`



`2x^2 - x + 3= 0 `

`x^2 - 3x + 2 = 0`

`x^2 + 3x + 2 = 0`

`x^2 - 3x - 2 = 0`



` - b/a`

`b/c`

`c/b`

` - c/b`



`x^2 + 2 mx + m^2 - mn + n^2 = 0`

`x^2 + 2 mx + (m - n)^2 = 0`

`x^2 - 2 mx + m^2 - n^2 = 0`

`x^2 + 2 mx + m^2 - n^2 = 0`



`q + r`

`p + q`

`q + r`

`p + q`



`p = 25//12`

`p < 25//12`

`p >25//12`

`p <= 25//12`



`170`

`180`

`190`

`290`



`b^2 = a(a + 4c)`

`a^2 = b(b + 4c)`

`a^2 = c(a + 4c)`

`b^2 = a(b + 4c)`



`-1`

`1`

`2`

`-2`



`1 - r`

`q- r`

`1 + r`

`q + r`



`3 : 1`

`1 : 2`

`1 : 3`

`3: 2`



`bc = a^2`

`bc = 36 a^2`

`bc = 72 a^2`

`bc = 108 a^2`



`(a, c)`

`(b, c)`

`(a, b)`

`(a + b, a + c)`



`aq = 2(b + p)`

`aq = b + p`

`ap = 2(b + q)`

`ap= b + q`



`2`

`5`

`2 + 5i`

`2 - 5i`



` - ( b (c - a))/(a(b - c))`

` ( b (c - a))/(a(b - c))`

` ( c (a - b))/(a(b - c))`

` - ( c (a - b))/(a(b - c))`



`-7//2,2`

`-3//2,4`

`-5//3,3`

`3//2,4`



`x^2 - x - 1 = 0`

`x^2 - x + 1 = 0`

`x^2 + x - 1 = 0`

`x^2 + x + 1 = 0`



10

8

6

4



`2`

`5//12`

`12//25`

`25//12`



`47//49`

`49//47`

`-47 //49`

`- 49//47`



complex

pure imaginary

irrational

rational



`2 - sqrt(3)`

`2 + sqrt(3)`

`7 - 4sqrt(3)`

`4`



`2b = a + c`

`b^2 = ac`

`b + c = 2a`

`b = ac`



`16`

`- 16`

`8`

`-8`



`1 ± i`

`2 ± i `

`1 ± sqrt(2)`

`2 ± i sqrt(2)`



`alpha^7` and `beta^(13)`

`alpha^(13)` and `beta^7`

`alpha^(20)` and `beta^(20)`

None of these



4 or 8

5 or 10

6 or 12

3 or 6



6, - 4, 1

4, 6, - 1

3,- 2, 1

6, 4, 1



`(alpha^4 - beta^4 )` is real

`2(alpha^5 + beta^5 ) = (alpha beta )^5`

`(alpha^6 - beta^6) = 0`

`(alpha^8 + beta^8) = (alpha beta)^8`



`x^2 - 2px - (p^2 - q) = 0`

`x^2 - 2px + (p^2 - q) = 0`

`x^2 + 2px - (p^2 - q) = 0`

`x^2 + 2px + (p^2 - q) = 0`



`12`

`15`

`16`

`18`



`- 3 < b < 3`

`- 2 < b < 2`

`b > 2`

`b < - 2`



1, 0

0, 1

-2, 0

-2, 1



`a^2 + b^2 = 2ac`

`b^2 - c^2 = 2ab`

`b^2 - a^2 = 2ac`

`b^2 + c^2 = 2ab`



always complex

always real

always purely imaginary

None of the above



no roots

one root

two equal roots

infinite roots



real

imaginary

positive

negative



-2 only

1 only

-2 and 1

-2 and -1



3, 8

-3, -8

3, -8

-3, 8



` a = (m - q)//(l -p)(l != p)`

`a = (m + q)//(l + p)(l != p)`

`l = (m- q)//(a- p)(a != p)`

`p = (m - q)//(a- l)(a != l)`



` (c-a)/(b - c)`

` (a - b)/(b - c)`

` ( b - c)/(a - b)`

`(c -a)/(a - b)`



`2n^2`

`2n^4`

`2`

`n^2`



`((B^2 - 4AC))/A^2`

`((B^2 - 4AC))/A^2`

`((2AC - B^2))/A^2`

`B^2 - 2C`



not necessarily real, if the coefficients are real

always imaginary

always real

real, if the coefficients are real



`p^2 + q^2 -2pr = 0`

`p^2 - q^2 + 2pr = 0`

`(p + r)^2 = 2(p^2 + r^2 )`

`(p- r)^2 = q^2 + r^2`



`1`

`2`

`-2`

`3`



`p^2 - 4q`

`(p^2 - 4q)/2`

`(p^2 - 4q)/q^2`

`(p^2 - 2q)/q^2`



` - 2/3`

`2/3`

`4`

`8`



`2`

`3`

`4`

`9`



`-1 <= x <= 4`

`2 <= x <= 4`

`-1 < x <= 1`

`-1 <= x <= 1` or `2 < x <= 4`



`5`

`sqrt5`

`1`

`(5)^(1//4)`



`q = -1`

`q = 1`

`q = 0`

`q = 1/2`



`1` unit

`2` units

`3` units

`4` units



`k^2`

`1/k^2`

`2k^2`

`1/(2k^2)`



If `b^ 2 - 4ac > 0`, then `f^(-1)(0)` does not contain `0`

If `b2^ - 4ac < 0`. then `f^(-1)(0)` must contain `0`

If `b^ 2 - 4ac > 0`, then `f^(-1)(0)` may contain `0`

If `b2^ - 4ac < 0`. then `f^(-1)(0)` may contain `0`



`6`

`3 sqrt(2)`

`4 sqrt(2)`

`12`



`10`

`15`

`20`

`30`



` sqrt(alpha/beta ) + sqrt(beta/alpha) - sqrt(m/l) = 0`

` sqrt(alpha/beta ) + sqrt(beta/alpha) + sqrt(m/l) = 0`

` sqrt( alpha + beta)/(alpha beta) - sqrt(m/l) = 0`

The arithmetic mean of `alpha` and `beta` is the same as their geometric mean.



k = 0 only

k = - 3 only

k = 0 or k = 3

k = 0 or k = - 3



`beta , 1/alpha`

`alpha , 1/beta`

` - alpha , - beta`

`1/alpha , 1/beta`



Signs of a and c should be like

Signs of b and c should be like

Signs of a and b should be like

None of the above



` - 1/3`

`- 1/2`

`0`

`1`



`(b/B)^2`

`(a/A)^2`

`(a^2b^2)/(A^2B^2)`

`(ab)/(AB)`



`(b/B)^2`

`(a/A)^2`

`(a^2b^2)/(A^2B^2)`

`(ab)/(AB)`



`a/(bc)`

`b/(ac)`

`(-b)/(ac)`

`(-a)/(bc)`



`-2`

`0`

`30`

`34`



`a = 2 , b = 4`

`a = 2 ,b = - 4`

`a = 1, b = 1/2`

`a = -1, b = - 1/2`



`x in (-1, 4)`

`x in [-1, 4]`

`x in (-oo, -1) cup (4, oo)`

`x in (-oo , 1) cup [4, oo)`
