

`x = y = z`

`xz = 1`

`x ne y` and `y=z`

`x = y` and `y ne z`



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



` - 7/(17)`

` 5/(16)`

`5/4`

` 7/(17)`



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



`x = 1`

`x = -1`

`x = 0`

` x = 1/2`



` (tan^(-1)) ((60)/(119) )`

` (tan^(-1)) ((120)/(119) )`

` (tan^(-1)) ((90)/(169) )`

` (tan^(-1)) ((170)/(169) )`



` (tan^(-1)) ((828)/(845) )`

` (tan^(-1)) ((8287)/(8450) )`

` (tan^(-1)) ((8281)/(8450) )`

` (tan^(-1)) ((8287)/(8451) )`



` pi/2 `

`pi/3`

`pi/6`

`pi/4`



Only 1

Only 2

Both 1 and 2

Neither 1 nor 2



`(3pi)/5`

`(2 pi)/5`

`( pi)/5`

None of these



`tan^( -1) ( (x + y)/(1 - xy))`

` - pi + tan^( -1) ( (x + y)/(1 - xy))`

` pi - tan^( -1) ( (x + y)/(1 - xy))`

`tan^( -1) ( (x - y)/(1 + xy))`



`pi/2`

`pi/3`

`pi/4`

`pi/6`



tan x

cot x

tan 2x

cot 2x



`pi/2`

`pi/3`

`pi/4`

`pi/6`



`(a-b)/(1+ab)`

`(a-b)/(1-ab)`

`(2ab)/(a+b)`

`(a+b)/(1-ab)`



`0`

`1//2`

`1`

`2`



`tan^(-1) 2`

`tan^(-1) 4`

`pi/4`

`pi/3`



`63/65`

`33/65`

`22/65`

`11/65`



`pi/2`

`pi/3`

`pi/4`

`pi/6`



Only I

Only II

Both I and II

Neither I nor II



`0`

`1`

`4//5`

`1//5`



`pi/3`

`pi/2`

`pi/4`

`pi/6`



`pi/4`

`pi/2`

`-pi/4`

`0`



`1`

`7`

`13`

`17`



Both Statements I and II are independently correct and Statement II is the correct explanation of Statement I

Both Statements I and II are independently correct but Statement II is not the correct explanation of Statement I

Statement I is correct but Statement II is false

Statement I is false but Statement II is correct



`0`

`1/sqrt 5`

`2/sqrt 5`

`sqrt 3/2`



`[-1,1]`

`[0,1]`

`[-1,0]`

`[-1/sqrt 2, 1/sqrt 2]`



`a/b`

`ab`

`b/a`

`(a-b)/(1+ab)`



`sin^(-1) {sin (5pi //4)} = - pi // 4`

`sec^(-1) {sec (5pi //4)} = 3pi // 4`

`tan^(-1) {tan (5pi //4)} = pi// 4`

`cosec^(-1) {cosec (7pi//4)} = pi//4`



`1/sqrt 2,-1/sqrt 2`

`1/2, 1/2`

`1/2, -1/2`

`1/sqrt 2,1/sqrt 2`



`(sqrt(1-x^2))/x`

`x^2/(1+x^2)`

`(sqrt(1+x^2))/x`

`sqrt(1-x^2)`



`x=-1/2`

`x=1`

`x=1/2`

`x=sqrt 3/2`



`[-1/2,1/2]`

`[1/2,1]`

`[-1,-1/2]`

`[-1,1]`



`1`

`-1`

`0`

`2`



`-1/sqrt 2`

`0`

`1/sqrt 2`

`1/(2 sqrt 2)`



`pi/2+theta`

`pi/2-theta`

`pi/2`

`-theta`



`pi/2+theta`

`pi/2-theta`

`pi/2`

`-theta`



`pi`

`pi/2`

`pi/4`

`pi/3`



`sqrt((x^2+1)/(x^2+2))`

`sqrt((x^2+2)/(x^2+1))`

`(x^2+1)/(x^2+2)`

`(x^2+2)/(x^2+1)`
