

in the plane of XY

in the plane of YZ

in the plane of XZ

along the X·axis



`pm 8`

`pm 12`

Only `8`

Only `12`



`cxxa`

`cxxb`

`-((axxb))/(|axxb|)`

`((axxb))/(|axxb|)`



`pm 8`

`pm 12`

Only `8`

Only `12`



`2 vec(OP)`

`4 vec(OP)`

`6 vec(OP)`

`8 vec(OP)`



`vec(BA)+vec(CD) = vec(AC)+vec(DB)`

`vec(BA)+vec(CD) = vec(BD)+vec(CA)`

`vec(BA)+vec(CD) = vec(AC)+vec(BD)`

`vec(BA)+vec(CD) = vec(BC)+vec(AD)`



`7`

`8`

`10`

`11`



`2sqrt(2)`

`2sqrt(10)`

`5`

`10`



`1`

`2`

`3`

`4`



`11`

`9`

`7`

`6`



`a + b`

`a - b`

`-a - b`

`-a + b`



`(i+ j-2k)/3`

`(i-2j+2k)/3`

`(21- j+ 2k)/3`

None of the above



P, Q and R are the vertices of an equilateral triangle

P, Q and R are the vertices of an isosceles triangle

P, Q and Rare collinear

None of the above



`2`

`3`

`4`

`5`



` (| hata - hatb |)/2`

` (| hata + hatb |)/2`

` (| hata - hatb |)/4`

` (| hata + hatb |)/4`



` (| hata - hatb |)/2`

` (| hata + hatb |)/2`

` (| hata - hatb |)/4`

` (| hata + hatb |)/4`



A parabola

An ellipse

a circle

a straight line



A straight line

An ellipse

A parabola

A circle



A parabola

An ellipse

a circle

a straight line



`72`

`64`

`48`

`36`



`1/2` unit

`1` unit

`2` units

`3` units



`a = lamda b` for some scalar `lamda`.

`a` is parallel to `b`

`a` is perpendicular to `b`

`a = b = 0`



hyperbola

ellipse

parabola

Circle



`pi/2 `

`pi/3`

`pi/6 `

None of these



`(11)/(12)`

`(13)/(14)`

`- (11)/(12)`

`- (13)/(14)`



`60^0`

`45^0`

`30^0`

`15^0`



`i + j- k`

`i- j + k`

`i- j- k`

None of these



`0`

`2`

`-2`

None of these



`(i+j)/sqrt2`

`(i-j)/sqrt2`

`k`

`(i+j+k)/sqrt3`



Only I

Only II

Only Ill

Both I and Ill



`8`

`6`

`4`

`2`



(a +b) is parallel to (a -b)

(a + b)· (a -b) = 1

(a + b) is perpendicular to (a -b)

None of the above



`sqrt(13/7)`

`sqrt(13)/7`

`13/ sqrt7`

None of these



`0`

`1/2`

`1`

`2`



`vecalpha`

`3vecalpha`

`-vecalpha`

`0`



` -1/3 `

` 1/3 `

`2/3`

`1`



`lambda=41/12, mu =31/12`

`lambda=41/12, mu -31/12`

`lambda=-41/12, mu =31/12`

None of these



`(-4hat i + 3hat j - hat k)/sqrt(26)`

`(-4hat i + 3hat j + hat k)/sqrt(26)`

`(-3hat i + 2hat j - hat k)/sqrt(26)`

`(-3hat i + 2hat j - hat k)/sqrt(14)`



`23` units

`19` units

`18` units

`21` units



`( hat i + hat j)/sqrt(2)`

`hat k`

`(hat j + hat k)/sqrt(2)`

`( hat i - hat j)/sqrt(2)`



`-10 i - 3 j + 4 k`

`-10 i + 3 j + 4 k`

`10 i - 3 j + 4 k`

None of the above



`i`

`-j`

`j`

`k`



`3i +2j`

`- 3i +2j`

`2i -3j`

`-2i +3j`



`12`

`16`

`20`

`24`





`2 (a xx b)`

`- 2 (a xx b)`

`(a xx b)`

`- (a xx b)`



`2`

`-2`

`1`

`7`



`5`

`10`

`14`

`16`



`2 sqrt(16 - (a.b)^2)`

`2 sqrt(4 - (a.b)^2)`

` sqrt(16 - (a.b)^2)`

`sqrt(4 - (a.b)^2)`



`0`

`pi/4`

`pi/2`

`pi`



`a= b`

The angle between `a` and `b` is `45^0`

`a` is parallel to `b`

`a` is perpendicular to `b`



a is parallel to b

a is perpendicular to b

a= 0 or b = 0

None of these



`1`

`(19)/9`

`(17)/9`

`(23)/9`



`sqrt5/2`

`19/9`

`sqrt5/4`

`11/3`



` 9/(19)`

`(19)/9`

`9`

`sqrt(19)`



`sqrt 5 //2`

` (19) /9`

`sqrt 5 //4`

`11//3`





` - 5/2 hat i + (3sqrt3)/2 hat j`

` 1/2 hat i + (sqrt3)/2 hat i`

` - 1/2 hat i + (3sqrt3)/2 hat j`

None of these



`2`

`sqrt 7`

`sqrt 14`

`14`



`5 sqrt(5)` sq units

`4 sqrt(5)` sq units

`5 sqrt(3)` sq units

`15 sqrt(2)` sq units



`12` sq units

`12.5` sq units

`25` sq units

`156.25` sq units



`6` sq units

`5` sq units

`4` sq units

`3` sq units



`5 sqrt(6)` sq units

`(5 sqrt(6))/2` sq units

`sqrt(6)` sq units

`sqrt(30)` sq units



`6sqrt(2)` sq units

`3sqrt(2)` sq units

`10sqrt(3)` sq units

None of these



`1/2` sq unit

`1` sq unit

`2` sq units

`4` sq units



`vec a + vec b`

`vec a . vec b`

`1/2 |vec a xx vec b|`

` |vec a xx vec b|`



`1/2` sq unit

`1` sq unit

`2` sq units

`4` sq units





`15/2` sq units

`15` sq units

`7/2` sq units

`7` sq units



`veca , vecb , vecc` are orthogonal inpairs and `|veca| = | vec c|` and `|vecb| = 1`

`veca , vecb , vecc` are non-orthogonal to each other

`veca , vecb , vecc` are orthogonal in pairs but `|veca| ne | vecc||`

`veca , vecb , vecc` are orthogonal in pairs but `| vecb| ne 1`



`(3 ( hati+hatj))/2`

`(2 ( hati+hatj))/3`

`((hati+hatj))/2`

`((hati+hatj))/3`



Only x

Only y

Both x and y

Neither x nor y



` vec(u) * (vec(v) xx vec(w))`

`(vec(u) xx vec(v))* vec(w)`

` (vec(u) * vec(v) ) xx vec(w)`

`vec(u) xx (vec(v) * vec(w))`



`-2sqrt(16)`

`2sqrt(16)`

`sqrt(-16)`

`sqrt(16)`



`(veca vecd) [veca vecb vecc]`

`(veca vecc) [veca vecb vecc]`

`(veca vecb) [veca vecb vecc]`

None of these



`-1`

`sqrt(10) + sqrt (6)`

`sqrt(59)`

`sqrt(60)`



`-1`

`sqrt (10) + sqrt (6)`

`sqrt (58)`

`sqrt (59)`



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



`vecR `is parallel to` vecA`

`vecR `must be parallel to` vecB`

`vecR `must be perpendicular to ` vecB`

none of the options



`sqrt(12)`

`2 sqrt(120`

`3 sqrt(14)`

`2 sqrt(14)`



`vec a`

`2 vec a`

`3 vec a`

` vec 0`



`2/3`

`3/2`

`2`

`3`



`m=2` and `n=±1`

`m=±2` and `n=-1`

`m = 2` and `n = -1`

`m = ±2` and `n = 1`



arithmetic mean of `alpha` and `beta`

geometric mean of `alpha` and `beta`

harmonic mean of `alpha` and `beta`

None of the above



Only a

Only b

Both a and b

Neither a nor b



`-2`

`2`

`-4`

`4`



`-8`

`4`

`8`

`12`



`-8`

`4`

`8`

`12`



`a· (b xx c)= 0`

`a· (b xx c)= 1`

`a·(bxxc)=-1`

`a·(bxxc)=3`



`0`

`5/3`

`1`

`8/5`



`0`

`5/3`

`1`

`8/5`



`-8`

`4`

`8`

`12`



`0`

`5//3`

`1`

`8//5`



`0`

`pa`

`qb`

`(p+ q) c`



`-2`

`2`

`-4`

`4`



Only I

Only II

Both I and II

Neither I nor II
