Mathematics REVISION OF Inverse Trigonometric function FOR NDA

INVERSE FUNCTION

If `f: X -> Y` is a function which is both one-one and onto, then its inverse function `f^(-1) : Y -> X` is

defined as `y = f(x) ⇔ f^(-1 ) (y) = x, AA x in X , AA y in Y`

INVERSE TRIGONOMETRIC FUNCTIONS AND THEIR DOMAIN AND RANGE

Trigonometric functions are not one-one and onto on their natural domains and ranges, so in order to
make them one-one and onto, we restrict their domain and codomain. And thus we obtain inverses of
trigonometric functions. Inverse of f is denoted by `f^(-1)`.

Let `y = f(x) =sin x` be a function. Then, its inverse is `x =sin^(-1) y`.



1. `y = sinx `
Domain : `-pi/2 le x le pi/2`
Range : `-1 le y le 1`

`=> y = sin^(-1)x`
Domain : ` -1 le x le 1`
Range : `-pi/2 le y le pi/2`


2. `y = cosx`
Domain : `0 le x le pi`
Range : `-1 le y le 1`

`=> y = cos^(-1)x`
Domain : ` -1 le x le 1`
Range : `0 le y le pi`


3. `y=tan x`
Domain : `-pi/2 < x < pi/2`
Range : `-oo < y < oo`

`=> y = tan^(-1)x`
Domain : ` -oo < x < oo`
Range : `-pi/2 < y < pi/2`


4. `y= sec (x)`
Domain : `0 le x le pi , x ne pi/2`
Range : `y le -1` or `y ge 1`

`=> y = sec^(-1)x`
Domain : ` x le -1` or `x ge 1`
Range : `0 le y le pi , y ne pi/2`


5. `y= cosec (x)`
Domain : `-pi/2 le x le pi/2 , x ne 0`
Range : `y le -1` or `y ge 1`

`=> y = cosec^(-1)x`
Domain : ` x le -1` or `x ge 1`
Range : `-pi/2 le y le pi/2 , y ne 0`


6. `y= cot (x)`
Domain :`0 < x < pi`
Range : `-oo < y < oo`

`=> y = cot^(-1)x`
Domain : ` oo < x < oo`
Range : `0 < y< pi`

Properties of Inverse Trigonometric Functions

(1)

`sin (sin^-1 x) = x, x ∈ [– 1, 1]` and `sin^-1 (sin x) = x, x ∈ [ - pi/2, pi/2]`

`cos (cos^-1 x) = x, x ∈ [– 1, 1]` and `cos ^-1 (cos x) = x, x ∈ [ 0,pi]`

`tan (tan^-1 x) = x, x ∈ R` and `tan^-1 (tan x) = x, x ∈ ( - pi/2, pi/2)`

`cosec (cosec^-1 x) = x, |x| ge 1` and `cosec^-1 (cosec x) = x, x ∈ [ - pi/2, pi/2] , xne0`

`sec (sec^-1 x) = x, |x| ge 1` and `sec^-1 (sec x) = x, x ∈ [ 0, pi], x ne pi/2`

`cot (cot^-1 x) = x, x ∈ R` and `cot^-1 (cot x) = x, x ∈ ( 0,pi)`

(2)

• `sin ^-1 \ \1/x = cosec^-1 x , x >= 1 ` or ` x <= -1`

• `cos^-1 \ \ 1/x = sec^-1 x, x ≥ 1` or `x ≤ – 1`

• `tan ^-1 \ \ 1/x = cot^-1 x , x > 0`

To prove the first result, we put `cosec^-1 x = y`, i.e., x = cosec y

Therefore `1/x = sin y`

Hence `sin^-1 \ \1/x = y`

or ` sin ^-1 \ \1/x = cosec^-1 x`

Similarly, we can prove the other parts.


(3)

(i) `sin^-1 (–x) = – sin^-1 x, x ∈ [– 1, 1]`

(ii) `tan^-1 (–x) = – tan^-1 x, x ∈ R`

(iii) `cosec^-1 (–x) = – cosec^-1 x, | x | ≥ 1`

Let `sin^-1 (–x) = y`, i.e., `–x = sin y` so that `x = – sin y`, i.e., `x = sin (–y)`.

Hence `sin^-1 x = – y = – sin^-1 (–x)`

Therefore `sin^-1 (–x) = – sin^-1 x`

Similarly, we can prove the other parts.

(i) `cos^-1 (–x) = π – cos^-1 x, x ∈ [– 1, 1]`

(ii) `sec^-1 (–x) = π – sec^-1 x, | x | ≥ 1`

(iii) `cot^-1 (–x) = π – cot^-1 x, x ∈ R`

Let `cos^-1 (–x) = y` i.e., `– x = cos y` so that `x = – cos y = cos (π – y)`

Therefore `cos^-1 x = π – y = π – cos^-1 (–x)`

Hence `cos^-1 (–x) = π – cos^-1 x`

Similarly, we can prove the other parts.

4)

(i) `sin^-1 x + cos^-1 x = pi/2, x ∈ [– 1, 1]`

(ii) `tan^-1 x + cot^-1 x = π/2, x ∈ R`

(iii) `cosec^-1 x + sec^-1 x = pi/2 , | x| >= 1`

Let `sin^-1 x = y`. Then `x = sin y = cos ( pi/2 - y)`

Therefore `cos^-1 x = pi/2 - y = pi/2 - sin ^-1 x`

Hence `sin^-1 x + cos^-1 x = pi/2`

Similarly, we can prove the other parts.

5)

(i) `tan^-1x + tan^-1 y = tan^-1 \ \( x +y)/( 1 - xy) , xy < 1`

(ii) `tan^-1x – tan^-1 y = tan^-1 \ \( x - y)/( 1 + xy), xy > -1`

(iii) `2tan^-1x = tan^-1\ \ (2x ) /( 1- x^2) , | x | < 1`

Let `tan^-1 x = θ` and `tan^-1 y = phi`. Then `x = tan θ, y = tan phi`

Now `tan ( theta + pi) = ( tan theta + tan phi )/( 1- tan theta tan phi ) = ( x + y) /( 1- xy)`

This gives ` theta + phi = tan ^-1 \ \ ( x+y) /(1 -xy)`

Hence ` tan ^-1 a + tan ^-1 y = tan^-1 \ \ ( x +y) /(1 -xy)`

In the above result, if we replace y by – y, we get the second result and by replacing y by x, we get the third result.

6)

(i) `2tan^-1 x = sin^-1 \ \( 2x) /( 1 + x^2) , | x| <=1`

(ii) `2tan^-1 x = cos^-1 \ \( 1- x^2 ) /( 1 +x^2 ) , x >= 0`

(iii) `2 tan^-1 x = tan^-1 \ \ (2 x) /(1 -x^2 ) . -1 < x < 1`

Let `tan^-1 x = y`, then `x = tan y`. Now

`sin^-1 \ \ ( 2 x) /( 1 + x^2) = sin^-1 \ \ ( 2 tan y) /( 1 + tan^2 y)`

`= sin^-1 (sin 2y) = 2y = 2tan^-1 x`

Also `cos^-1 \ \ ( 1 - x^2 ) /( 1 +x^2) = cos^-1 \ \ ( 1 - tan^2y)/( 1 + tan^2y) = cos ^-1 \ \ ( cos 2y ) = 2y = 2 tan ^-1 x`


7)

`sin^(-1)x + sin^(-1)y = sin^(-1)(xsqrt(1-y^2) + y sqrt(1-x^2))`

`sin^(-1)x - sin^(-1)y = sin^(-1)(xsqrt(1-y^2) - y sqrt(1-x^2))`

`cos^(-1)x + cos^(-1)y = cos^(-1)(xy - sqrt(1-x^2) .sqrt(1-x^2))`

`cos^(-1)x + cos^(-1)y = cos^(-1)(xy + sqrt(1-x^2) .sqrt(1-x^2))`

 
SiteLock