

Only I

Only II

Both I and II

Neither I nor II



`sin 1^0 > sin 1`

`sin 1^0 < sin 1`

`sin 1^0 =sin 1`

`sin 1^0 = pi/180 sin1`



`1`

`0`

`-1`

`1/2`



`2 (1 -cos A)(1 +sin A)`

`2 (1- sin A)(1 +cos A)`

`2 (1- cos A)(l- sin A)`

None of the above



`sin theta - cos theta`

`sin theta + cos theta`

` 2 sin theta`

`2 cos theta`



`2/3`

`3/2`

`2`

`1`



`I < IV < II < Ill`

`IV < II < I < Ill`

`IV < II < Ill < I`

`I < IV< Ill < II`



`5/13`

`12/13`

`-12/13`

`-13/12`



`0`

`2 cos C`

`cos C - sin C`

`2 sin C`



`cos theta - sin theta`

`cos theta + sin theta`

`2 cos theta + sin theta`

`cos theta + 2sin theta`



`1`

`1/2`

`0`

`-1`



`sin 47^0`

`cos 47^0`

`2 sin 47^0`

`2 cos 47^0`



`121/96`

`217/921`

`146/121`

`267/121`



`sec A- tan A`

`2 sec A . tan A`

`4 sec A . tan A`

`4 cosec A. cot A`



`sqrt3`

`1/sqrt3`

`-sqrt3`

`-1/sqrt3`



Only `1`

Only `2`

Both `1` and `2`

Neither `1` nor `2`



`0`

`1`

`2`

`3`



`- cosec quad 88^0`

`- cosec quad 2^0`

`- cosec quad 44^0`

`- cosec quad 46^0`



`0`

`1`

`2`

`3`



`-2`

`0`

`1`

`2`



`1`

`-1`

`-sqrt2`

`-sqrt3`



`1/2`

`1/sqrt2`

`sqrt3/2`

`1/3`



`0`

`1`

`2`

`-1`



`2`

`4`

`8`

`16`



Only r

`r , phi`

`theta , phi`

`r , theta`



`1`

`0`

`-1`

`a^2+b^2-c^2`



`(3+2sqrt2)/2`

`(1+2 sqrt2)/2`

`(3sqrt2+2)/2`

`1`



`y^2-2x = 1`

`y^2+2x = 1`

`y^2-2x = -1`

`y^2+2x = -1`



`2`

`4`

`8`

`16`



a negative number

a transcendental number

an irrational number

a rational number



`7`

`8`

`9`

`(19)/2`



`-2`

`0`

`1`

`2`



`sintheta`

`cos theta`

`tantheta`

`sec theta`



`sin^2 theta`

`cos^2 theta`

`tan^2 theta`

`1`



`45^0, 30^0`

`30^0 , 45^0`

`15^0 , 60^0`

`45^0 , 15^0`



`0`

`1`

`2`

None of these



`sin A`

`cos A`

`tan A`

`1`



`1`

`1/2`

`1/3`

`2`



`1`

`0`

`cos^2 theta`

`2 sintheta`



`8`

`7`

`4`

`3`



`-4`

`-p^2` tor some odd prime `p`

`(-q/p)` where `p` is an odd prime and `q` is a positive integer with `(q/p)` not an integer

`-p` for some odd prime `p`
