4.1	(d) Chapter 4
4.2	(a) Moving Charges and Magnetism
4.3	(a)
4.4	(d)
4.5	(a)
4.6	(d)
4.7	(a), (b)
4.8	(b), (d)
4.9	(b), (c)
4.10	(b), (c), (d)
4.11	(a), (b), (d)
4.12	For a charge particle moving perpendicular to the magnetic field:
	$\frac{mv^2}{R} = qvB$

$$\therefore \frac{qB}{m} = \frac{v}{R} = \omega \qquad \qquad \therefore [\omega] = \left[\frac{qB}{m}\right] = \left[\frac{v}{R}\right] = [T]^{-1}.$$

4.13 dW=**F**.d**1** = 0 \Rightarrow **F**.vdt = 0 \Rightarrow **F**.v = 0

F must be velocity dependent which implies that angle between **F** and **v** is 90°. If **v** changes (direction) then (directions) **F** should also change so that above condition is satisfied.

- **4.14** Magnetic force is frame dependent. Net acceleraton arising from this is however frame independent (non relativistic physics)for inertial frames.
- **4.15** Particle will accelerate and decelerate altenatively. So the radius of path in the Dee's will remain unchanged.
- **4.16** At O_2 , the magnetic field due to I_1 is along the y-axis. The second wire is along the *y*-axis and hence the force is zero.

4.17
$$\mathbf{B} = \frac{1}{4} (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \frac{\mu_0 I}{2R}$$

- **4.18** No dimensionless quantity $[T]^{-1} = [\omega] = \begin{bmatrix} eB \\ m \end{bmatrix}$
- **4.19** $\mathbf{E} = E_0 \hat{\mathbf{i}}, E_0 > 0, \mathbf{B} = B_0 \hat{\mathbf{k}}$
- **4.20** Force due to $d\mathbf{l}_2$ on $d\mathbf{l}_1$ is zero.
 - ______

4.25 As **B** is along the *x* axis, for a circular orbit the momenta of the two particles are in the y - z plane. Let \mathbf{p}_1 and \mathbf{p}_2 be the momentum of the electron and positron, respectively. Both of them define a circle of radius *R*. They shall define circles of opposite sense. Let \mathbf{p}_1 make an angle θ with the y axis \mathbf{p}_2 must make the same angle. The centres of the repective circles must be perpendicular to the momenta and at a distance *R*. Let the center of the electron be at *Ce* and of the positron at *Cp*. The coordinates of Ce is

The coordinates of Ce is

 $Ce \equiv (0, -R\sin\theta, R\cos\theta)$ The coordinates of Cp is

$$Cp \equiv (0, -R\sin\theta, \frac{3}{2} \text{ R-R}\cos\theta)$$

The circles of the two shall not overlap if the distance between the two centers are greater than 2R. Ζ

Let *d* be the distance between Cp and Ce.

4.27 (a) B (z) points in the same direction on z - axis and hence J (L) is a monotonically increasing function of L.

(b) J(L) + Contribution from large distance on contour $C = \mu_0 I$

 $\therefore asL \rightarrow \infty$

4.26

Contribution from large distance $\rightarrow 0(asB)$ $1/r^{3}$)

 $J(\infty) - \mu_0 I$

(c)
$$B_{z} = \frac{\mu_{0}IR^{2}}{2(z^{2} + R^{2})^{3/2}}$$

$$\int_{-\infty}^{\infty} B_{z}dz = \int_{-\infty}^{\infty} \frac{\mu_{0}IR^{2}}{2(z^{2} + R^{2})^{3/2}}dz$$
Put $z = R \tan\theta$ $dz = R \sec^{2}\theta d\theta$

$$\therefore \int_{-\infty}^{\infty} B_{z}dz = \frac{\mu_{0}I}{2}\int_{-\pi/2}^{\pi/2}\cos\theta d\theta = \mu_{0}I$$
(d) $B(z)_{square} < B(z)_{circular coil}$

$$\therefore \mathcal{G}(L)_{square} < \mathcal{G}(L)_{circular coil}$$
But by using arguments as in (b)
$$\mathcal{G}(\infty)_{square} = \mathcal{G}(\infty)_{circular}$$
4.28 $i_{G} \cdot G = (i_{I} - i_{G}) (S_{1} + S_{2} + S_{3})$ for $i_{I} = 10$ mA
$$i_{G} (G + S_{1}) = (i_{2} - i_{G}) (S_{2} + S_{3})$$
 for $i_{g} = 1A$
gives $S_{1} = 1W$, $S_{2} = 0.1W$ and $S_{3} = 0.01W$
4.29 (a) zero
(b) $\frac{\mu_{0}}{2\pi R}$ perpendicular to AO towards left.

–L

(c)
$$\frac{\mu_0}{\pi} \frac{i}{R}$$
 perpendicular to AO towards left.