## ANSWERS

I. Multiple Choice Guestions (Type-I)

| 1. (iii) | 2. (ii) | 3. (i) | 4. (iii) | 5. (i) | 6. (i) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7. (iv) | 8. (iii) | 9. (iii) | 10. (iii) | 11 . (ii) | 12. (i) |
| 13. (iii) | 14. (i) | 15. (i) | 16. (ii) | 17. (i) | 18. (i) |
| 19. (iii) | 20. (iii) | 21. (i) | 22. (iii) | 23. (i) | 24. (iii) |
| 25. (iv) | 26. (iii) | 27. (ii) |  |  |  |

II. Multiple Choice Questions (Type-II)
28. (i), (iii)
29. (ii), (iii)
30. (ii), (iv)
31. (i), (iii), (iv)
32. (i), (iii)
33. (iii), (iv)
34. (i), (iv)
35. (i), (ii)
36. (ii), (iii)
37. (i), (ii)

## III. Short Answer Type

38. Acid fog is formed, which is difficult to condense.
39. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow[500 \mathrm{~K}, 9 \text { bar }]{\mathrm{Pt} / \mathrm{Rh} \text { gage catalyst }} 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
(From air)
40. 



Pyrophosphoric acid
41. $\mathrm{NH}_{3}$ forms hydrogen bonds with water therefore it is soluble in it but $\mathrm{PH}_{3}$ cannot form hydrogen bond with water so it escapes as gas.
42. [Hint : It has trigonal bipyramidal geometry]
43. In gaseous state $\mathrm{NO}_{2}$ exists as monomer which has one unpaired electron but in solid state it dimerises to $\mathrm{N}_{2} \mathrm{O}_{4}$ so no unpaired electron is left hence solid form is diamagnetic.
44. Because fluorine is more electronegative as compared to chlorine.
45. Bond angle of $\mathrm{H}_{2} \mathrm{O}$ is larger, because oxygen is more electronegative than sulphur therefore bond pair electron of $\mathrm{O}-\mathrm{H}$ bond will be closer to oxygen and there will be more bond-pair bond-pair repulsion between bond pairs of two $\mathrm{O}-\mathrm{H}$ bonds.
46. Due to small size of fluorine six $\mathrm{F}^{-}$ion can be accomodated around sulphur whereas chloride ion is comparatively larger in size, therefore, there will be interionic repulsion.
47. A is $\mathrm{PCl}_{5}$ (It is yellowish white powder)

$$
\mathrm{P}_{4}+10 \mathrm{Cl}_{2} \longrightarrow 4 \mathrm{PCl}_{5}
$$

B is $\mathrm{PCl}_{3}$ (It is a colourless oily liquid)

$$
\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \longrightarrow 4 \mathrm{PCl}_{3}
$$

Hydrolysis products are formed as follows :

$$
\begin{aligned}
& \mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl} \\
& \mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}
\end{aligned}
$$

48. $\mathrm{NO}_{3}^{-}+3 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+} \longrightarrow \mathrm{NO}+3 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \longrightarrow } & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}+\mathrm{H}_{2} \mathrm{O} } \\
& (\text { brown complex) }
\end{aligned}
$$

49. Oxygen is more electronegative than chlorine, therefore dispersal of negative charge present on chlorine increases from $\mathrm{ClO}^{-}$to $\mathrm{ClO}_{4}^{-}$ion because number of oxygen atoms attached to chlorine is increasing. Therefore, stability of ions will increase in the order given below :

$$
\mathrm{ClO}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}
$$

Thus due to increase in stability of conjugate base, acidic strength of corresponding acid increases in the following order

$$
\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}
$$

50. See the NCERT textbook for Class XII, page 186.
51. $\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}$
$\left.\mathrm{H}_{3} \mathrm{PO}_{3}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}\right] \times 4$ (Neutralisation reaction)
$\mathrm{P}_{4} \mathrm{O}_{6}+8 \mathrm{NaOH} \longrightarrow 4 \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
1 mol 8 mol
Product formed by 1 mol of $\mathrm{P}_{4} \mathrm{O}_{6}$ is neutralised by 8 mols of NaOH
$\therefore$ Product formed by $\frac{1.1}{220} \mathrm{~mol}$ of $\mathrm{P}_{4} \mathrm{O}_{6}$ will be neutralised by $\frac{1.1}{220} \times 8 \mathrm{~mol}$ of NaOH
Molarity of NaOH solution is 0.1 M
$\Rightarrow 0.1 \mathrm{~mol} \mathrm{NaOH}$ is present in 1 L solution
$\therefore \frac{1.1}{220} \times 8 \mathrm{~mol} \mathrm{NaOH}$ is present in $\frac{1.1 \times 8}{220 \times 0.1} \mathrm{~L}=\frac{88}{220} \mathrm{~L}=\frac{4}{10} \mathrm{~L}=0.4 \mathrm{~L}=$ 400 mL of NaOH solution.
52. $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \longrightarrow 4 \mathrm{PCl}_{3}$
$\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl} \times 4$
$\mathrm{P}_{4}+6 \mathrm{Cl}_{2}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}+12 \mathrm{HCl}$
1 mol of white phosphorus produces 12 mol of HCl

62 g of white phosphorus has been taken which is equivalent to $\frac{62}{124}=\frac{1}{2} \mathrm{~mol}$.
Therefore 6 mol HCl will be formed.
Mass of $6 \mathrm{~mol} \mathrm{HCl}=6 \times 36.5=219.0 \mathrm{~g} \mathrm{HCl}$
53. Three oxoacids of nitrogen are
(i) $\mathrm{HNO}_{2}$, Nitrous acid
(ii) $\mathrm{HNO}_{3}$, Nitric acid
(iii) Hyponitrous acid, $\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$3 \mathrm{HNO}_{2} \xrightarrow{\text { Disproportionation }} \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
54. $4 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \longrightarrow 4 \mathrm{HPO}_{3}+2 \mathrm{~N}_{2} \mathrm{O}_{5}$

55. (a) - Structures (See NCERT textbook for Class XII)

- White phosphorus is discrete tetrahedral molecule. Thus it has tetrahedral structure with six P-P bonds.
- Red phosphorus has polymeric structure in which $\mathrm{P}_{4}$ tetrahedra are linked together through $\mathrm{P}-\mathrm{P}$ bonds to form chain.
(b) Reactivity

White phosphorus is much more reactive than red phosphorus. This is because in white phosphorus there is angular strain in $\mathrm{P}_{4}$ molecules because the bond angles are only of $60^{\circ}$.
56. Dilute and concentrated nitric acid give different oxidation products on reaction with copper metal.

$$
\begin{aligned}
& 3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \text { (dil.) } \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Cu}+4 \mathrm{HNO}_{3} \text { (Conc.) } \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

57. $\mathrm{PCl}_{5}+2 \mathrm{Ag} \longrightarrow 2 \mathrm{AgCl}+\mathrm{PCl}_{3}$
$\mathrm{AgCl}+2 \mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+} \mathrm{Cl}^{-}\right.$
(soluble complex)
58. Structure of phosphinic acid (Hypophosphorous acid) is as follows :


Reducing behaviour of phosphinic acid is observable in the reaction with silver nitrate given below :
$4 \mathrm{AgNO}_{3}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{2} \longrightarrow 4 \mathrm{Ag}+4 \mathrm{HNO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}$

## IV. Matching Type

59. (i)
60. (ii)
61. (i)
62. (ii)
63. (iii)
V. Assertion and Reason Type
64. (iii)
65. (iii)
66. (ii)
67. (i)
68. (i)
69. (i)
VI. Long Answer Type
70. ' $A$ ' is $S_{8} \quad$ ' $B$ ' is $\mathrm{SO}_{2}$ gas
$\mathrm{S}_{8}+8 \mathrm{O}_{2} \xrightarrow{\Delta} 8 \mathrm{SO}_{2}$
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+}$
(violet) (colourless)
$2 \mathrm{Fe}^{3+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}$
71. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \frac{\Delta}{673 \mathrm{~K}} 2 \mathrm{PbO}+4 \mathrm{NO}_{2}$
(A)
(Brown colour)

(B)
(Colourless solid)
$2 \mathrm{NO}+\mathrm{N}_{2} \mathrm{O}_{4} \xrightarrow{\Delta 250 \mathrm{~K}} 2 \mathrm{~N}_{2} \mathrm{O}_{3}$
(C)
(Blue solid)

(Structure of $\mathrm{N}_{2} \mathrm{O}_{4}$ )

(Structure of $\mathrm{N}_{2} \mathrm{O}_{3}$ )
72. $\mathrm{A}=\mathrm{NH}_{4} \mathrm{NO}_{2} \quad \mathrm{~B}=\mathrm{N}_{2} \quad \mathrm{C}=\mathrm{NH}_{3} \quad \mathrm{D}=\mathrm{HNO}_{3}$
(i) $\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
(iii) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
$3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO}$
