ANSWERS

I.

I. Multi	ple Choice Que	estions (Type-	I)		
1. (iv) 2. (iv)	3. (iii)	4. (ii)	5. (ii)	6. (i)
7. (ii i	i) 8. (iv)	9. (i)	10. (iii)	11. (iii)	12. (iv)
13. (i) 14. (iii)				
15.	(i) $\Delta G^{\circ} = 0$ <i>Justification</i> : ΔA At the stage of Thus, $\Delta G^{\circ} = 0$	$\Delta G^{\odot} = - \mathbf{R}T \ln K$ half completion	n of reaction [/	A] = [B], There	fore, <i>K</i> = 1.
16.	(i), Justification	n: According temperatur but K will re	to Le-Chateli re, the equilibr emain same.	ier's principle ium compositi	e, at constant ion will change
17.	(ii)				
18.	(i)				
19.	(iv)				
II. Multiple Choice Questions (Type-II)					

20. (i), (iii) and (iv)

Justification : (i) *K* increases with increase in temperature.

- (iii) Q > K, Therefore, reaction proceeds in the backward direction.
- (iv) $\Delta n > 0$, Therefore, $\Delta S > 0$.
- 21. (i) and (iv)

III. Short Answer Type

22.	HCl	Cl⁻
	acid	conjugate base
	H ₂ O	H_3O^+
	base	conjugate acid

- Sugar does not ionise in water but NaCl ionises completely in water 23. • and produces Na^+ and Cl^- ions.
 - Conductance increases with increase in concentration of salt due to • release of more ions.

97 Equilibrium

24. BF_{3} acts as a Lewis acid as it is electron deficient compound and coordinate bond is formed as given below :

 $H_3N: \rightarrow BF_3$

25. • Order of extent of ionisation at equilibrium is as follows :

Dimethylamine > Ammonia > Pyridine > Urea

- Since dimethylamine will ionise to the maximum extent it is the strongest base out of the four given bases.
- 26. $RO^{-} > OH^{-} > CH_{3}COO^{-} > CI^{-}$
- 27. $NH_4Cl < C_6H_5COONH_4 < KNO_3 < CH_3COONa$
- 28. At a given time the reaction quotient Q for the reaction will be given by the expression.

$$Q = \frac{[H_2][I_2]}{[HI]^2}$$
$$= \frac{1 \times 10^{-5} \times 1 \times 10^{-5}}{(2 \times 10^{-5})^2} = \frac{1}{4}$$

 $= 0.25 = 2.5 \times 10^{-1}$

As the value of reaction quotient is greater than the value of K_c i.e. 1×10^{-4} the reaction will proceed in the reverse direction.

- 29. Concentration of 10^{-8} mol dm⁻³ indicates that the solution is very dilute. Hence, the contribution of H_3O^+ concentration from water is significant and should also be included for the calculation of pH.
- 30. (i) pH = 5

 $[\mathrm{H}^{+}] = 10^{-5} \mathrm{mol} \mathrm{L}^{-1}$

On 100 times dilution

 $[H^+] = 10^{-7} \text{ mol } L^{-1}$

On calculating the pH using the equation $pH = -\log [H^+]$, value of pH comes out to be 7. It is not possible. This indicates that solution is very dilute. Hence,

Total hydrogen = [H⁺] ion concentration

 $= \begin{bmatrix} \text{Contribution of} \\ \text{H}_{3}\text{O}^{+} \text{ ion} \\ \text{concentration} \\ \text{of acid} \end{bmatrix} + \begin{bmatrix} \text{Contribution of} \\ \text{H}_{3}\text{O}^{+} \text{ ion} \\ \text{concentration} \\ \text{of water} \end{bmatrix}$ $= 10^{-7} + 10^{-7}.$

$$pH = 2 \times 10^{-7} = 7 - \log 2 = 7 - 0.3010 = 6.6990$$

Exemplar Problems, Chemistry 98

 $BaSO_4$ (s) $\Rightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$ 1 0 0 At t = 0At equilibrium in water 1-S S S S (S+0.01)At equilibrium in the presence 1–S of sulphuric acid K_{sp} for BaSO₄ in water = [Ba²⁺] [SO₄²⁻] = (S) (S) = S² But S = 8 \times 10⁻⁴ mol dm⁻³ $\therefore K_{\rm sp} = (8 \times 10^{-4})^2 = 64 \times 10^{-8}$... (1) The expression for $K_{\rm sp}$ in the presence of sulphuric acid will be as follows : $K_{\rm sp} = (S) (S + 0.01)$... (2)

Since value of K_{sp} will not change in the presence of sulphuric acid, therefore from (1) and (2)

(S) (S + 0.01) = 64×10^{-8}

⇒

$$\Rightarrow S^2 + 0.01 S = 64 \times 10^{-8}$$

 \implies S² + 0.01 S - 64 × 10⁻⁸ = 0

$$S = \frac{-0.01 \pm \sqrt{(0.01)^2 + (4 \times 64 \times 10^{-8})}}{2}$$

= $\frac{-0.01 \pm \sqrt{10^{-4} + (256 \times 10^{-8})}}{2}$
= $\frac{-0.01 \pm \sqrt{10^{-4} (1 + 256 \times 10^{-2})}}{2}$
= $\frac{-0.01 \pm 10^{-2} \sqrt{1 + 0.256}}{2}$
= $\frac{-0.01 \pm 10^{-2} \sqrt{1.256}}{2}$
= $\frac{-10^{-2} + (1.12 \times 10^{-2})}{2}$
= $\frac{(-1+1.12) \times 10^{-2}}{2} = \frac{0.12}{2} \times 10^{-2}$
= $6 \times 10^{-4} \text{ mol dm}^{-3}$
= 99 Equilibrium

31.

- 32. pH of HOCl = 2.85
 - But, $-pH = \log [H^+]$ $\therefore -2.85 = \log [H^+]$ $\Rightarrow \overline{3}.15 = \log [H^+]$ $\Rightarrow [H^+] = 1.413 \times 10^{-3}$

For weak mono basic acid $[H^+] = \sqrt{K_a \times C}$

$$\Rightarrow K_{a} = \frac{[H^{+}]^{2}}{C} = \frac{(1.413 \times 10^{-3})^{2}}{0.08}$$
$$= 24.957 \times 10^{-6} = 2.4957 \times 10^{-5}$$

33. pH of Solution A = 6

Therefore, concentration of $[H^+]$ ion in solution A = 10^{-6} mol L⁻¹

pH of Solution B = 4

Therefore, Concentration of $[H^{+}]$ ion concentration of solution $B = 10^{-4} \text{ mol } L^{-1}$ On mixing one litre of each solution, total volume = 1L + 1L = 2L

Amount of H^+ ions in 1L of Solution A= Concentration × volume V

= 10^{-6} mol × 1L

Amount of H^+ ions in 1L of solution $B = 10^{-4} \text{ mol} \times 1L$

 \therefore Total amount of $H^{^{+}}$ ions in the solution formed by mixing solutions A and B is (10^{^{-6}} mol + 10^{^{-4}} mol)

This amount is present in 2L solution.

$$\therefore \text{ Total } [H^+] = \frac{10^{-4}(1+0.01)}{2} = \frac{1.01 \times 10^{-4}}{2} \text{ mol } L^{-1} = \frac{1.01 \times 10^{-4}}{2} \text{ mol } L^{-1}$$
$$= 0.5 \times 10^{-4} \text{ mol } L^{-1}$$
$$= 5 \times 10^{-5} \text{ mol } L^{-1}$$
$$= 5 \times 10^{-5} \text{ mol } L^{-1}$$
$$pH = -\log [H^+] = -\log (5 \times 10^{-5})$$
$$= -[\log 5 + (-5 \log 10)]$$
$$= -\log 5 + 5$$
$$= 5 - \log 5$$

$$= 5 - 0.6990$$

= 4.3010 = 4.3

Exemplar Problems, Chemistry 100

34. Let S be the solubility of $Al(OH)_3$.

35.

	Al (OH) ₃	\rightleftharpoons Al ³⁺ (aq)	+ 30H ⁻ (aq)		
Concentration of species at t = 0	1	0	0		
Concentration of various species at equilibrium	1-S	S	3S		
$K_{sp} = [AI^{3+}] [OH^{-}]^{3} = (S) (3S)$	$K_{sp} = [Al^{3+}] [OH^{-}]^{3} = (S) (3S)^{3} = 27 S^{4}$				
$S^{4} = \frac{K_{sp}}{27} = \frac{27 \times 10^{-11}}{27 \times 10} = 1$	$S^{4} = \frac{K_{sp}}{27} = \frac{27 \times 10^{-11}}{27 \times 10} = 1 \times 10^{-12}$				
$S = 1 \times 10^{-3} \text{ mol } L^{-1}$	$\mathbf{S} = 1 \times 10^{-3} \text{ mol } \mathbf{L}^{-1}$				
(i) Solubility of Al(OH) ₃	Solubility of Al(OH) ₃				
Molar mass of Al (OH) $_3$ is	Molar mass of Al $(OH)_3$ is 78 g. Therefore,				
Solubility of Al (OH) ₃ in g	Solubility of Al (OH) ₃ in g L ⁻¹ = $1 \times 10^{-3} \times 78$ g L ⁻¹ = 78×10^{-3} g L ⁻¹				
	$= 7.8 \times 10^{-2} \text{ g L}^{-1}$				
(ii) pH of the solution	pH of the solution				
$S = 1 \times 10^{-3} \text{ mol } L^{-1}$					
$[OH^{-}] = 3S = 3 \times 1 \times 10^{-3} = 3$	$[OH^{-}] = 3S = 3 \times 1 \times 10^{-3} = 3 \times 10^{-3}$				
pOH = 3 – log 3	pOH = 3 – log 3				
pH = 14 - pOH= 11 + log	3 = 11.477	1			
$K_{\rm sp} \text{ of PbCl}_{2} = 3.2 \times 10^{-8}$					
Let S be the solubility of $PbCl_2$.					
	\mathbf{PbCl}_2 (s)	\Rightarrow Pb ²⁺ (aq)	+ 2Cl ⁻ (aq)		
Concentration of					

Concentration of			
species at $t = 0$	1	0	0
Concentration of various			
species at equilibrium	1-S	S	2S

$$K_{sp} = [Pb^{2+}] [Cl^{-}]^{2} = (S) (2S)^{2} = 4S^{3}$$

$$K_{sp} = 4S^{3}$$

$$S^{3} = \frac{K_{sp}}{4} = \frac{3.2 \times 10^{-8}}{4} \text{ mol } L^{-1} = 8 \times 10^{-9} \text{ mol } L^{-1}$$

$$S = \sqrt[3]{8 \times 10^{-9}} = 2 \times 10^{-3} \text{ mol } L^{-1} \quad \therefore \quad S = 2 \times 10^{-3} \text{ mol } L^{-1}$$

101 Equilibrium

Molar mass of $PbCl_2 = 278$

:. Solubility of PbCl₂ in g L⁻¹ = $2 \times 10^{-3} \times 278$ g L⁻¹

$$= 556 \times 10^{-3} \text{ g L}^{-1}$$
$$= 0.556 \text{ g L}^{-1}$$

To get saturated solution, 0.556 g of PbCl₂ is dissolved in 1 L water.

0.1 g PbCl₂ is dissolved in $\frac{0.1}{0.556}$ L = 0.1798 L water.

To make a saturated solution, dissolution of 0.1 g $PbCl_2$ in 0.1798 L \approx 0.2 L of water will be required.

37.
$$\Delta_r H^{\ominus} = \Delta_f H^{\ominus} [CaO(s)] + \Delta_f H^{\ominus} [CO_2(g)] - \Delta_f H^{\ominus} [CaCO_3(s)]$$

 $\therefore \Delta_r H^{\ominus} = 178.3 \text{ kJ mol}^{-1}$

The reaction is endothermic. Hence, according to Le-Chatelier's principle, reaction will proceed in forward direction on increasing temperature.

IV. Matching Type

38.	(i) \rightarrow (b)	(ii) \rightarrow (d)	(iii) \rightarrow (c)	$(iv) \rightarrow (a)$
39.	(i) \rightarrow (d)	(ii) \rightarrow (c)	(iii) \rightarrow (b)	
40.	(i) \rightarrow (d)	(ii) \rightarrow (a)	(iii) \rightarrow (b)	
41.	(i) \rightarrow (b)	(ii) \rightarrow (e)	(iii) \rightarrow (c)	$(\mathrm{iv}) \rightarrow (\mathrm{d})$
42.	(i) \rightarrow (c)	(ii) \rightarrow (a)	(iii) \rightarrow (b)	
43.	(i) \rightarrow (b) and (c)	(ii) \rightarrow (d)	(iiii) \rightarrow (a)	

V. Assertion and Reason Type

44. (i) 45. (i) 46. (ii) 47. (iii) 48. (i) 49. (iii)

50. (iv)

VI. Long Answer Type

- 51. (i) $Q_{\rm c} < K_{\rm c}$
 - (ii) $Q_c > K_c$
 - (iii) $Q_{c} = K_{c}$

where, Q_c is reaction quotient in terms of concentration and K_c is equilibrium constant.

Exemplar Problems, Chemistry 102

53. [**Hint**: $A_x^{p+}B_y^{q-} \rightleftharpoons x A^{p+}$ (aq) + $y B^{q-}$ (aq)

S moles of $A_x B_y$ dissolve to give x S moles of A^{P^+} and y S moles of B^{q^-} .]

54. $\Delta G = \Delta G^{\ominus} + RT \ln Q$

 ΔG^{\ominus} = Change in free energy as the reaction proceeds

 ΔG = Standard free energy change

Q =Reaction quotient

R = Gas constant

T = Absolute temperature

Since $\Delta G^{\ominus} = - \mathbf{R}T \ln K$

 $\therefore \quad \Delta G = -RT \ln K + RT \ln Q = RT \ln \frac{Q}{K}$

If Q < K, ΔG will be negative. Reaction proceeds in the forward direction.

If Q = K, $\Delta G = 0$, no net reaction.

[**Hint:** Next relate Q with concentration of CO, H₂, CH₄ and H₂O in view of reduced volume (increased pressure). Show that Q < K and hence the reaction proceeds in forward direction.]