ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iv)
2. (iv)
3. (iii)
4. (ii)
5. (ii)
6. (i)
7. (iii)
8. (iv)
9. (i)
10. (iii)
11. (iii)
12. (iv)
13. (i)
14. (iii)
15. (i) $\Delta G^{\ominus}=0$

Justification : $\Delta G^{\ominus}=-\mathrm{R} T \ln K$
At the stage of half completion of reaction $[\mathrm{A}]=[\mathrm{B}]$, Therefore, $K=1$.
Thus, $\Delta G^{\ominus}=0$
16. (i), Justification: According to Le-Chatelier's principle, at constant temperature, the equilibrium composition will change but K will remain same.
17. (ii)
18. (i)
19. (iv)

II. Multiple Choice Questions (Type-II)

20. (i), (iii) and (iv)

Justification : (i) K increases with increase in temperature.
(iii) $\mathrm{Q}>K$, Therefore, reaction proceeds in the backward direction.
(iv) $\Delta n>0$, Therefore, $\Delta S>0$.
21. (i) and (iv)
III. Short Answer Type
22. HCl
Cl^{-}
acid conjugate base
$\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}$
base conjugate acid
23. - Sugar does not ionise in water but NaCl ionises completely in water and produces Na^{+}and Cl^{-}ions.

- Conductance increases with increase in concentration of salt due to release of more ions.

24. BF_{3} acts as a Lewis acid as it is electron deficient compound and coordinate bond is formed as given below :
$\mathrm{H}_{3} \mathrm{~N}: \rightarrow \mathrm{BF}_{3}$
25. - Order of extent of ionisation at equilibrium is as follows :

Dimethylamine $>$ Ammonia $>$ Pyridine $>$ Urea

- Since dimethylamine will ionise to the maximum extent it is the strongest base out of the four given bases.

26. $\mathrm{RO}^{-}>\mathrm{OH}^{-}>\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{Cl}^{-}$
27. $\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONH}_{4}<\mathrm{KNO}_{3}<\mathrm{CH}_{3} \mathrm{COONa}$
28. At a given time the reaction quotient Q for the reaction will be given by the expression.
$Q=\frac{\left[H_{2}\right]\left[I_{2}\right]}{[H I]^{2}}$
$=\frac{1 \times 10^{-5} \times 1 \times 10^{-5}}{\left(2 \times 10^{-5}\right)^{2}}=\frac{1}{4}$
$=0.25=2.5 \times 10^{-1}$
As the value of reaction quotient is greater than the value of K_{c} i.e. 1×10^{-4} the reaction will proceed in the reverse direction.
29. Concentration of $10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$ indicates that the solution is very dilute. Hence, the contribution of $\mathrm{H}_{3} \mathrm{O}^{+}$concentration from water is significant and should also be included for the calculation of pH .
30. (i) $\mathrm{pH}=5$
$\left[\mathrm{H}^{+}\right]=10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
On 100 times dilution
$\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{~mol} \mathrm{~L}{ }^{-1}$
On calculating the pH using the equation $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, value of pH comes out to be 7. It is not possible. This indicates that solution is very dilute. Hence,
Total hydrogen $=\left[\mathrm{H}^{+}\right]$
ion concentration

$$
\begin{aligned}
& =\left[\begin{array}{l}
\text { Contribution of } \\
\mathrm{H}_{3} \mathrm{O}^{+} \text {ion } \\
\text { concentration } \\
\text { of acid }
\end{array}\right]+\left[\begin{array}{l}
\text { Contribution of } \\
\mathrm{H}_{3} \mathrm{O}^{+} \text {ion } \\
\text { concentration } \\
\text { of water }
\end{array}\right] \\
& =10^{-7}+10^{-7} . \\
\mathrm{pH}=2 \times 10^{-7}=7 & -\log 2=7-0.3010=6.6990
\end{aligned}
$$

31.

At $\mathrm{t}=0$
At equilibrium in water
$\mathrm{BaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})$

At equilibrium in the presence $1-S$
S
S
of sulphuric acid
K_{sp} for BaSO_{4} in water $=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=(\mathrm{S})(\mathrm{S})=\mathrm{S}^{2}$
But $\mathrm{S}=8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$\therefore K_{\mathrm{sp}}=\left(8 \times 10^{-4}\right)^{2}=64 \times 10^{-8}$
The expression for K_{sp} in the presence of sulphuric acid will be as follows :
$K_{\mathrm{sp}}=(\mathrm{S})(\mathrm{S}+0.01)$
Since value of K_{sp} will not change in the presence of sulphuric acid, therefore from (1) and (2)
$(S)(S+0.01)=64 \times 10^{-8}$
$\Rightarrow \quad \mathrm{S}^{2}+0.01 \mathrm{~S}=64 \times 10^{-8}$
$\Rightarrow \quad \mathrm{S}^{2}+0.01 \mathrm{~S}-64 \times 10^{-8}=0$

$$
\begin{aligned}
\Rightarrow & =\frac{-0.01 \pm \sqrt{(0.01)^{2}+\left(4 \times 64 \times 10^{-8}\right)}}{2} \\
& =\frac{-0.01 \pm \sqrt{10^{-4}+\left(256 \times 10^{-8}\right)}}{2} \\
& =\frac{-0.01 \pm \sqrt{10^{-4}\left(1+256 \times 10^{-2}\right)}}{2} \\
& =\frac{-0.01 \pm 10^{-2} \sqrt{1+0.256}}{2} \\
& =\frac{-0.01 \pm 10^{-2} \sqrt{1.256}}{2} \\
& =\frac{-10^{-2}+\left(1.12 \times 10^{-2}\right)}{2} \\
& =\frac{(-1+1.12) \times 10^{-2}}{2}=\frac{0.12}{2} \times 10^{-2} \\
& =6 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

32. pH of $\mathrm{HOCl}=2.85$

$$
\begin{aligned}
& \text { But, }-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right] \\
& \therefore-2.85=\log \left[\mathrm{H}^{+}\right] \\
& \Rightarrow \overline{3} .15=\log \left[\mathrm{H}^{+}\right] \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=1.413 \times 10^{-3}
\end{aligned}
$$

For weak mono basic acid $\left[\mathrm{H}^{+}\right]=\sqrt{K_{a} \times \mathrm{C}}$

$$
\begin{aligned}
\Rightarrow \quad K_{\mathrm{a}} & =\frac{\left[H^{+}\right]^{2}}{C}=\frac{\left(1.413 \times 10^{-3}\right)^{2}}{0.08} \\
& =24.957 \times 10^{-6}=2.4957 \times 10^{-5}
\end{aligned}
$$

33. pH of Solution $\mathrm{A}=6$

Therefore, concentration of $\left[\mathrm{H}^{+}\right]$ion in solution $\mathrm{A}=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
pH of Solution $\mathrm{B}=4$
Therefore, Concentration of $\left[\mathrm{H}^{+}\right]$ion concentration of solution $B=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
On mixing one litre of each solution, total volume $=1 \mathrm{~L}+1 \mathrm{~L}=2 \mathrm{~L}$
Amount of H^{+}ions in 1 L of Solution $\mathrm{A}=$ Concentration \times volume V

$$
=10^{-6} \mathrm{~mol} \times 1 \mathrm{~L}
$$

Amount of H^{+}ions in 1 L of solution $\mathrm{B}=10^{-4} \mathrm{~mol} \times 1 \mathrm{~L}$
\therefore Total amount of H^{+}ions in the solution formed by mixing solutions A and B is $\left(10^{-6} \mathrm{~mol}+10^{-4} \mathrm{~mol}\right)$

This amount is present in 2 L solution.

$$
\begin{aligned}
& \begin{aligned}
\therefore \text { Total }\left[\mathrm{H}^{+}\right]= & \frac{10^{-4}(1+0.01)}{2}=\frac{1.01 \times 10^{-4}}{2} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned} \\
& \begin{aligned}
& =\frac{1.01 \times 10^{-4}}{2} \mathrm{~mol} \mathrm{~L}^{-1} \\
& =5.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & =-\log \left(5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right) \\
& =-[\log 5+(-5 \log 10)] \\
& =-\log 5+5 \\
& =5-\log 5 \\
& =5-0.6990 \\
& =4.3010=4.3
\end{aligned}
\end{aligned}
$$

34. Let S be the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$.

$$
\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

Concentration of species at $\mathrm{t}=0$

1
0
0
Concentration of various species at equilibrium

1-S
S
3S

$$
\begin{aligned}
& K_{s p}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=(\mathrm{S})(3 \mathrm{~S})^{3}=27 \mathrm{~S}^{4} \\
& \mathrm{~S}^{4}=\frac{K_{s p}}{27}=\frac{27 \times 10^{-11}}{27 \times 10}=1 \times 10^{-12} \\
& \mathrm{~S}=1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$

(i) Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$

Molar mass of $\mathrm{Al}(\mathrm{OH})_{3}$ is 78 g . Therefore,

$$
\begin{aligned}
& \text { Solubility of Al }(\mathrm{OH})_{3} \text { in } \mathrm{g} \mathrm{~L}^{-1}=1 \times 10^{-3} \times 78 \mathrm{~g} \mathrm{~L}^{-1}=78 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1} \\
& =7.8 \times 10^{-2} \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

(ii) $\mathbf{p H}$ of the solution

$$
\begin{aligned}
& \mathrm{S}=1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\
& {\left[\mathrm{OH}^{-}\right]=3 \mathrm{~S}=3 \times 1 \times 10^{-3}=3 \times 10^{-3}} \\
& \mathrm{pOH}=3-\log 3 \\
& \mathrm{pH}=14-\mathrm{pOH}=11+\log 3=11.4771
\end{aligned}
$$

35. $K_{\text {sp }}$ of $\mathrm{PbCl}_{2}=3.2 \times 10^{-8}$

Let S be the solubility of PbCl_{2}.

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

Concentration of species at $\mathrm{t}=0$

1
0
0
Concentration of various species at equilibrium

1-S
S
$2 S$
$K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(\mathrm{S})(2 \mathrm{~S})^{2}=4 \mathrm{~S}^{3}$
$K_{\text {sp }}=4 \mathrm{~S}^{3}$
$\mathrm{S}^{3}=\frac{K_{\mathrm{sp}}}{4}=\frac{3.2 \times 10^{-8}}{4} \mathrm{~mol} \mathrm{~L}^{-1}=8 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{S}=\sqrt[3]{8 \times 10^{-9}}=2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \quad \therefore \mathrm{~S}=2 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Molar mass of $\mathrm{PbCl}_{2}=278$
\therefore Solubility of PbCl_{2} in $\mathrm{g} \mathrm{L}^{-1}=2 \times 10^{-3} \times 278 \mathrm{~g} \mathrm{~L}^{-1}$

$$
\begin{aligned}
& =556 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1} \\
& =0.556 \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

To get saturated solution, 0.556 g of PbCl_{2} is dissolved in 1 L water.
$0.1 \mathrm{~g} \mathrm{PbCl}_{2}$ is dissolved in $\frac{0.1}{0.556} \mathrm{~L}=0.1798 \mathrm{~L}$ water.
To makea saturated solution, dissolution of $0.1 \mathrm{~g} \mathrm{PbCl}_{2}$ in $0.1798 \mathrm{~L} \approx 0.2$ Lof water will be required.
37. $\Delta_{\mathrm{r}} H^{\ominus}=\Delta_{f} H^{\ominus}[\mathrm{CaO}(\mathrm{s})]+\Delta_{f} H^{\ominus}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]-\Delta_{f} H^{\ominus}\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]$
$\therefore \Delta_{\mathrm{r}} H^{\ominus}=178.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The reaction is endothermic. Hence, according to Le-Chatelier's principle, reaction will proceed in forward direction on increasing temperature.

IV. Matching Type

38. (i) \rightarrow (b)
(ii) \rightarrow (d)
(iii) \rightarrow (c)
(iv) \rightarrow (a)
39. (i) \rightarrow (d)
(ii) \rightarrow (c)
(iii) \rightarrow (b)
40. (i) \rightarrow (d)
(ii) \rightarrow (a)
(iii) \rightarrow (b)
41. (i) \rightarrow (b)
(ii) \rightarrow (e)
(iii) \rightarrow (c)
(iv) \rightarrow (d)
42. (i) \rightarrow (c)
(ii) \rightarrow (a)
(iii) \rightarrow (b)
43. (i) \rightarrow (b) and (c) (ii) \rightarrow (d)
(iii) \rightarrow (a)

V. Assertion and Reason Type

44. (i)
45. (i)
46. (ii)
47.(iii)
47. (i)
48. (iii)
49. (iv)

VI. Long Answer Type

51. (i) $Q_{\mathrm{c}}<K_{\mathrm{c}}$
(ii) $Q_{\mathrm{c}}>K_{\mathrm{c}}$
(iii) $\Theta_{\mathrm{c}}=K_{\mathrm{c}}$
where, Q_{c} is reaction quotient in terms of concentration and K_{c} is equilibrium constant.
52. [Hint : $\mathrm{A}_{x}^{p+} \mathrm{B}_{y}^{q-} \rightleftharpoons x \mathrm{~A}^{p+}(\mathrm{aq})+y \mathrm{~B}^{\mathrm{q}-}(\mathrm{aq})$

S moles of $\mathrm{A}_{x} \mathrm{~B}_{y}$ dissolve to give $x \mathrm{~S}$ moles of $\mathrm{A}^{\mathrm{p}+}$ and $y \mathrm{~S}$ moles of B^{q}.]
54. $\Delta G=\Delta G^{\ominus}+R T \ln Q$
$\Delta G^{\ominus}=$ Change in free energy as the reaction proceeds
$\Delta G=$ Standard free energy change
$Q=$ Reaction quotient
$\mathrm{R}=$ Gas constant
$T=$ Absolute temperature
Since $\Delta G^{\ominus}=-\mathrm{R} T \ln K$
$\therefore \quad \Delta G=-R T \ln K+\mathrm{R} T \ln Q=\mathrm{RT} \ln \begin{aligned} & Q \\ & K\end{aligned}$
If $Q<K, \Delta G$ will be negative. Reaction proceeds in the forward direction.
If $Q=K, \Delta G=0$, no net reaction.
[Hint: Next relate Q with concentration of $\mathrm{CO}, \mathrm{H}_{2}, \mathrm{CH}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$ in view of reduced volume (increased pressure). Show that $Q<\mathrm{K}$ and hence the reaction proceeds in forward direction.]

