ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iv)
2. (i)
3. (ii)
4. (i)
5. (i)
6. (iv)
7. (iii)
8. (ii)
9. (iv)
10. (iii)

II. Multiple Choice Questions (Type-II)

11. (iii), (iv)
12. (iii), (iv)
13. (iii), (iv)
14. (i), (iv)
15. (i), (iii)
16. (i), (iii)
17. (i), (iii)
18. (i), (iii)
19. (ii), (iii)

III. Short Answer Type

20. Both alkenes and arenes are electron-rich. Therefore undergo electrophilic reactions. Olefins undergo addition reactions because addition of a reagent to an olefin gives a more stable product as $s p^{2}$ hybridisation changes to $s p^{3}$ hybridisation. Addition to the double bond of an arene would give a product with less or no resonance stability hence addition is difficult arenes. On the other hand in substitution reaction resonance stabilisation is retained therefore, arenes undergo substitution reaction.
21. 2-Butene is capable of showing geometrical isomerism.
22. The rotation about $\mathrm{C}-\mathrm{C}$ bond is restricted because of repulsion between electron cloud of $\mathrm{C}-\mathrm{H}$ bonds on either carbon atoms.
23. Bond dissociation energy is least for HI and maximum for HCl therefore, order of reactivity will be $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$.
24. Propyl chloride forms less stable $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{\oplus}$ carbocation with anhydrous AlCl_{3} which rearranges to a more stable $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$ carbocation and gives isopropylbenzene as the product of the reaction.
25. The +R effect of $-\mathrm{OCH}_{3}>-\mathrm{Cl}$ and $-\mathrm{NO}_{2}$ has a -R effect. Relative reactivity of the substituted benzene rings is as follows :
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OCH}_{3}>\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}>\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NO}_{2}$
26. Halogens attached to benzene rings exert -I and +R effect. +R effect dominates -I effect and increases the electron density at ortho and para positions of the benzene ring with respect to halogens.
27. 2-Methyl butane is
 and C given below :

A (1°)

B $\left(2^{\circ}\right)$

Nine possibilities for compound 'A' because nine methyl hydrogens are present in 2-methylbutane.

Two possibilities for ' B ' compound because two CH hydrogens are present in 2-methylbutane.

C (3°)
Only one possibility for 'C' compound because one CH hydrogen is present in 2 methylbutane.

Relative amounts of $\mathrm{A}, \mathrm{B}=$ number of hydrogen \times relative reactivity and C compounds
A (1°)
B (2°)
C (3°)
$2 \times 3.8=7.6$
$1 \times 5=5$

Relative amount $\quad 9 \times 1=9$

Total Amount of monohaloginated compounds $=9+7.6+5=21.6$
Percentage of $\mathrm{A}=\frac{9}{21.6} \times 100=41.7 \%$
Percentage of $B=\frac{7.6}{21.6} \times 100=35.2 \%$
Percentage of $\mathrm{C}=\frac{5}{21.6} \times 100=23.1 \%$
35.

I

II

Radical I is tertiary where as radical II is primary. Radical I is more stable due to hyperconjugation.
36.

37. $\mathrm{A}=$ Planar ring, all atoms of the ring $s p^{2}$ hybridised, has six delocalised π electrons, follows Huckel rule. It is aromatic.
$\mathrm{B}=$ Has six π electrons, but the delocalisation stops at $s p^{3}$ hybridised CH_{2} - carbon. Hence, not aromatic.
$\mathrm{C}=$ Six delocalised π-electrons (4π electrons +2 unshared electrons on negatively charged carbon) in a planar ring, follows Huckel's rule. It is aromatic.
$\mathrm{D}=$ Has only four delocalised π-electrons. It is non aromatic.
$\mathrm{E}=$ Six delocalised π-electrons follows Huckel's rule. π electrons are in $s p^{2}$ hybridised orbitals, conjugation all over the ring because of positively charged carbon. The ring is planar hence is aromatic.
$F=$ Follows Huckel's rule, has 2π electrons i.e. $(4 n+2) \pi$-electrons where ($\mathrm{n}=0$), delocalised π-electrons. It is aromatic.
$\mathrm{G}=8 \pi$ electrons, does not follow Huckel's rule i.e., (4n+2) π-electrons rule. It is not aromatic.
38. $\mathrm{A}=$ Has 8π electrons, does not follow Huckel rule. Orbitals of one carbon atom are not in conjugation. It is not aromatic.
$\mathrm{B}=$ Has 6π delocalised electrons. Hence, is aromatic.
$\mathrm{C}=$ Has 6π electrons in conjugation but not in the ring. Non aromatic.
$\mathrm{D}=10 \pi$ electrons in planar rings, aromatic.
$\mathrm{E}=$ Out of 8π electrons it has delocalised 6π electrons in one six membered planar ring, which follows Huckel's rule due to which it will be aromatic.
$\mathrm{F}=14 \pi$ electrons are in conjugation and are present in a ring. Huckel's rule is being followed. Compound will be aromatic if ring is planar.

IV. Matching Type

40.

(i) \rightarrow (d)
(ii) \rightarrow (a)
(iii) \rightarrow (e)
(iv) \rightarrow (c)
(v) \rightarrow (b)
41.
(i) \rightarrow (b)
(ii) \rightarrow (c)
(iii) \rightarrow (a)
42.
(i) \rightarrow (d)
(ii) \rightarrow (c)
(iii) \rightarrow (b)
(iv) \rightarrow (a)
43.
(i) \rightarrow (d)
(ii) \rightarrow (a)
(iii) \rightarrow (b)
(iv) \rightarrow (c)

V. Assertion and Reason Type

44. (i)
45. (i)
46. (i)
47. (iii)

VI. Long Answer Type

48. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br} \xrightarrow{\text { alc. } \mathrm{KOH}}$ Alkene $\left(\mathrm{C}_{5} \mathrm{H}_{10}\right) \xrightarrow{\mathrm{Br}_{2} \text { in } \mathrm{CS}_{2}} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{Br}_{2}$
(A)
(B)
(C)

The reactions suggest that (D) is a terminal alkyne. This means triple bond is at the end of the chain. It could be either (I) or (II).

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \equiv \mathrm{CH}
$$

I

II

Since alkyne 'D' on hydrogenation yields straight chain alkane, therefore structure I is the structure of alkyne (D).
Hence, the structures of A, B and C are as follows :
(A)

(B)

(C)

49. Step I

896 mL vapour of $\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{~A})$ weighs 3.28 g
22700 mL vapour of $\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{~A})$ weighs $\frac{3.28 \times 22700}{896} \mathrm{~g} \mathrm{~mol}^{-1}=83.1 \mathrm{~g} \mathrm{~mol}^{-1}$

Step II

Element	(\%)	Atomic mass	Relative ratio	Relative no. of atoms	Simplest ratio
C	87.8	12	7.31	1	3
H	12.19	1	12.19	1.66	$4.98 \approx 5$

Empirical formula of ' $\mathrm{A}^{\prime} \mathrm{C}_{3} \mathrm{H}_{5}$
Empirical formula mass $=35+5=41$ u
$\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{83.1}{41}=2.02 \approx 2$
\Rightarrow Molecular mass is double of the empirical formula mass.
\therefore Molecular Formula is $\mathrm{C}_{6} \mathrm{H}_{10}$
Step III
$\mathrm{C}_{6} \mathrm{H}_{10} \xrightarrow{2 \mathrm{H}_{2}}$ 2-methylpentane
(A)

Structure of 2-methylpentane is

Hence, the molecule has a five carbon chain with a methyl group at the second carbon atom.
' A ' adds a molecule of $\mathrm{H}_{2} \mathrm{O}$ in the presence of Hg^{2+} and H^{+}, it should be an alkyne. Two possible structures for ' A ' are :

I

II

Since the ketone (B) gives a positive iodoform test, it should contain a $-\mathrm{COCH}_{3}$ group. Hence the structure of ketone is as follows :

Therefore structure of alkyne is II.
50. Two molecules of hydrogen add on ' A ' this shows that ' A ' is either an alkadiene or an alkyne.
On reductive ozonolysis ' A ' gives three fragments, one of which is dialdehyde. Hence, the molecule has broken down at two sites. Therefore, ' A ' has two double bonds. It gives the following three fragments :
$\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$
Hence, its structure as deduced from the three fragments must be

(A)

Reactions

