Chapter 3

3.1 (b)
3.2 (a)
3.3 (b)
3.4 (c)
3.5 (b)
3.6 (c)
3.7 (a), (c), (d)
3.8 (a), (c), (e)
3.9 (a), (d)
3.10 (a), (c)
3.11 (b), (c), (d)
3.12 (a) (iii), (b) (ii), (c) iv, (d) (i)
3.13

3.14 (i) $x(t)=t-\sin t$
(ii) $x(t)=\sin t$
$3.15 x(t)=\mathrm{A}+B e^{-\gamma t}$; A $>\mathrm{B}, \gamma>0$ are suitably chosen positive constants.
$3.16 \quad v=g / \mathrm{b}$
3.17 The ball is released and is falling under gravity. Acceleration is $-g$, except for the short time intervals in which the ball collides with

ground, and when the impulsive force acts and produces a large acceleration.
3.18 (a) $x=0, v=\gamma x_{o}$
3.19 Relative speed of cars $=45 \mathrm{~km} / \mathrm{h}$, time required to meet $=\frac{36 \mathrm{~km}}{45 \mathrm{~km} / \mathrm{h}}=0.80 \mathrm{~h}$

Thus, distance covered by the bird $=36 \mathrm{~km} / \mathrm{h} \times 0.8 \mathrm{~h}=28.8 \mathrm{~km}$.
3.20 Suppose that the fall of 9 m will take time t. Hence
$y-y_{o}=v_{o y}-\frac{g t^{2}}{2}$
Since $v_{o y}=0$,
$t=\sqrt{\frac{2\left(y-y_{o}\right)}{g}} \rightarrow \sqrt{\frac{2 \times 9 \mathrm{~m}}{10 \mathrm{~m} / \mathrm{s}^{2}}}=\sqrt{1.8} \approx 1.34$ seconds.
In this time, the distance moved horizontally is
$x-x_{o}=v_{o x} t=9 \mathrm{~m} / \mathrm{s} \times 1.34 \mathrm{~s}=12.06 \mathrm{~m}$.
Yes-he will land.

3.21 Both are free falling. Hence, there is no acceleration of one w.r.t. another. Therefore, relative speed remains constant ($=40 \mathrm{~m} / \mathrm{s}$).
$3.22 v=\left(-v_{0} / x_{0}\right) x+v_{0}, a=\left(v_{0} / x_{0}\right)^{2} x-v_{0}^{2} / x_{0}$

The variation of a with x is shown in the figure. It is a straight line with a positive slope and a negative intercept.
3.23 (a) $v=\sqrt{2 g h}=\sqrt{2 \times 10 \times 1000}=141 \mathrm{~m} / \mathrm{s}=510 \mathrm{~km} / \mathrm{h}$.
(b) $\quad m=\frac{4 \pi}{3} r^{3} \rho=\frac{4 \pi}{3}\left(2 \times 10^{-3}\right)^{3}\left(10^{3}\right)=3.4 \times 10^{-5} \mathrm{~kg}$.

$$
P=m v \approx 4.7 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \approx 5 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

(c) Diameter $\approx 4 \mathrm{~mm}$

$$
\Delta t \approx d / v=28 \mu \mathrm{~s} \approx 30 \mu \mathrm{~s}
$$

(d) $\quad F=\frac{\Delta P}{\Delta t}=\frac{4.7 \times 10^{-3}}{28 \times 10^{-6}} \approx 168 \mathrm{~N} \approx 1.7 \times 10^{2} \mathrm{~N}$.
(e) Area of cross-section $=\pi d^{2} / 4 \approx 0.8 \mathrm{~m}^{2}$.

With average separation of 5 cm , no. of drops that will fall almost simultaneously is $\frac{0.8 \mathrm{~m}^{2}}{\left(5 \times 10^{-2}\right)^{2}} \approx 320$.

Net force $\approx 54000 \mathrm{~N}$ (Practically drops are damped by air viscosity).
3.24 Car behind the truck

Regardation of truck $=\frac{20}{5}=4 \mathrm{~ms}^{-2}$
Regardation of car $=\frac{20}{3} \mathrm{~ms}^{-2}$
Let the truck be at a distance x from the car when breaks are applied
Distance of truck from A at $t>0.5 \mathrm{~s}$ is $\quad x+20 t-2 t^{2}$.
Distance of car from A is $\quad 10+20(t-0.5)-\frac{10}{3}(t-0.5)^{2}$.
If the two meet
$x+20 t-2 t^{2}=10+20 t-10-{ }_{3}^{10} t^{2}+{ }_{3}^{10} t-0.25 \times \frac{10}{3}$.
$x=-\frac{4}{3} t^{2}+{ }_{3}^{10} t-\frac{5}{6}$.
To find $x_{\text {min }}$,

$$
\frac{d x}{d t}=-\frac{8}{3} t+\frac{10}{3}=0
$$

which gives $t_{\min }=\begin{gathered}10 \\ 8\end{gathered}=\frac{5}{4} \mathrm{~s}$.
Therefore, $x_{\min }=-\frac{4}{3}\left(\frac{5}{4}\right)^{2}+{ }_{3}^{10} \times \frac{5}{4}-\frac{5}{6}=\frac{5}{4}$.
Therefore, $x>1.25 \mathrm{~m}$.
Second method: This method does not require the use of calculus.
If the car is behind the truck,
$V_{\text {car }}=20-(20 / 3)(t-0.5)$ for $t>0.5 \mathrm{~s}$ as car declerate only after 0.5 s .
$V_{\text {truck }}=20-4 t$
Find t from equating the two or from velocity vs time graph. This yields $t=5 / 4 \mathrm{~s}$.

In this time truck would travel truck,
$S_{\text {truck }}=20(5 / 4)-(1 / 2)(4)(5 / 4)^{2}=21.875 \mathrm{~m}$

Answers

and car would travel, $S_{\text {car }}=20(0.5)+20(5 / 4-0.5)-$
$\left(\frac{1}{2}\right)(20 / 3) \times\left(\frac{5}{4}-0.5\right)^{2}=23.125 m$
Thus $S_{\text {car }}-S_{\text {truck }}=1.25 \mathrm{~m}$.
If the car maintains this distance initially, its speed after 1.25 s will he always less than that of truck and hence collision never occurs.
3.25
(a) $(3 / 2) \mathrm{s}$,
(b) $(9 / 4) \mathrm{s}$,
(c) $0,3 \mathrm{~s}$,
(d) 6 cycles.
$3.26 v_{1}=20 \mathrm{~m} / \mathrm{s}, v_{2}=10 \mathrm{~m} / \mathrm{s}$, time difference $=1 \mathrm{~s}$.

