Answers

Chapter 14

- **14.1** (b)
- **14.2** (b)
- **14.3** (d)
- **14.4** (c)
- **14.5** (c)
- **14.6** (d)
- **14.7** (b)
- **14.8** (a)
- **14.9** (c)
- **14.10**(a)
- **14.11**(b)
- **14.12**(a), (c)
- **14.13**(a), (c)
- **14.14**(d), (b)
- 14.15(a), (b), (d)
- **14.16** (a), (b), (c)
- **14.17** (a), (b) (d)
- **14.18**(a), (c), (d)
- **14.19** (i) (A),(C),(E),(G) (ii) (B), (D), (F), (H)
- 14.202kx towards left.
- **14.21** (a) Acceleration is directly proportional to displacement.
 - (b) Acceleration is directed opposite to displacement.
- **14.22** When the bob of the pendulum is displaced from the mean position so that $\sin\theta$

Exemplar Problems-Physics

- **14.23** + ω
- 14.24 Four
- **14.25** -ve

14.28
$$l_m = \frac{1}{6}l_E = \frac{1}{6}m$$

- 14.29 If mass *m* moves down by *h*, then the spring extends by 2*h* (because each side expands by *h*). The tension along the string and spring is the same.
 - In equilibrium

mg = 2 (k. 2h)

where k is the spring constant.

On pulling the mass down by x,

$$F = pxg - 2k (2K + 2x)$$

$$= -4kx$$

So. $T = 2\pi \sqrt{\frac{m}{4k}}$
14.30 $y = \sqrt{2} \sin(\omega t - \pi / 4); T = 2\pi / \omega$
14.31 $\frac{A}{\sqrt{2}}$
14.32 $U = U_o (1 - \cos \alpha x)$
 $F = \frac{-dU}{dx} = \frac{-d}{dx} (U_o - U_o \cos \alpha x)$
 $= -U_o \alpha \sin \alpha x$
 $\approx -U_o \alpha \alpha x$ (for small αx , sin $\alpha x \sim \alpha x$)
 $= -U_o \alpha^2 x$
We know that $F = -kx$

So,
$$k = U_o \alpha^2$$

 $T = 2\pi \sqrt{\frac{m}{U_o \alpha^2}}$

Answers

14.33 $x = 5 \sin 5t$.

14.34
$$\theta_1 = \theta_o \sin(\omega t + \delta_1)$$

$$\theta_2 = \theta_o \sin\left(\omega t + \delta_2\right)$$

For the first, $\theta = 2^\circ$, $\therefore \sin(\omega t + \delta_1) = 1$

For the 2nd, $\theta = -1^\circ$, $\therefore \sin(\omega t + \delta_2) = -1/2$

$$\therefore \omega t + \delta_1 = 90^\circ, \ \omega t + \delta_2 = -30^\circ$$
$$\therefore \delta_1 - \delta_2 = 120^\circ$$

14.35 (a) Yes.

(b) Maximum weight =
$$Mg + MAa^{2}$$

= $50 \times 9.8 + 50 \times \frac{5}{100} \times (2\pi \times 2)^{2}$
= 490 + 400 = 890N.

Minimum weight =
$$Mg - MA\omega^2$$

=
$$50 \times 9.8 - 50 \times \frac{5}{100} \times (2\pi \times 2)^2$$

= 490-400
= 90 N.

Maximum weight is at the topmost position,

Minimum weight is at the lowermost position.

14.36 (a) 2cm (b) 2.8 s⁻¹

14.37 Let the log be pressed and let the vertical displacement at the equilibrium position be x_0 .

At equilibrium

mg = Buoyant force

 $=Ax_o\rho g$

When it is displaced by a further displacement x, the buoyant force

is $A(x_o + x)\rho g$.

Net restoning force

= Buoyant force – weight

$$= A(x_o + x)\rho g - mg$$

 $=(A\rho g)x$. i.e. proportional to x.

$$\therefore T = 2\pi \sqrt{\frac{m}{A\rho g}}$$

14.38 Consider the liquid in the length dx. It's mass is $A\rho dx$ at a height x.

Similarly, P.E. of the right column $= A\rho g \frac{h_2^2}{2} = \frac{A\rho g l^2 \sin^2 45^\circ}{2}$

 $h_1 = h_2 = l \sin 45^\circ$ where l is the length of the liquid in one arm of the tube.

Total P.E. =
$$A\rho gh^2 = A\rho gl^2 \sin^2 45^\circ = \frac{A\rho gl^2}{2}$$

If the change in liquid level along the tube in left side in y, then length of the liquid in left side is l-y and in the right side is l + y.

Total P.E. = $A\rho g(l - y)^2 \sin^2 45^\circ + A\rho g(l + y)^2 \sin^2 45^\circ$

Change in PE = $(PE)_{f} - (PE)_{i}$

$$= \frac{A\rho g}{2} \Big[(l-y)^{2} + (l+y)^{2} - l^{2} \Big]$$
$$= \frac{A\rho g}{2} \Big[l^{2} + y^{2} - 2 l y + l^{2} + y^{2} + 2 l y - l^{2} \Big]$$
$$= A\rho g \lfloor y^{2} + l^{2} \rfloor$$

Change in K.E. $=\frac{1}{2}A\rho 2l\dot{y}^2$

Change in total energy = 0

$$\Delta(P.E) + \Delta(K.E) = 0$$
$$A\rho g \left[l^2 + y^2 \right] + A\rho l \dot{y}^2 = 0$$

Differentiating both sides w.r.t. time,

Answers

$$A\rho g \left[0 + 2y \frac{dy}{dt} \right] + 2A\rho l \dot{y} \ddot{y} = 0$$

$$2A\rho g y + 2A\rho l \ddot{y} = 0$$

$$l \ddot{y} + g y = 0$$

$$\omega^{2} = \frac{g}{l}$$

$$\omega = \sqrt{\frac{g}{l}}$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

14.39 Acceleration due to gravity at $P = \frac{g.x}{R}$, where *g* is the acceleration at the surface.

Force
$$=\frac{mgx}{R} = -k.x$$
, $k = \frac{mg}{R}$
Motion will be SHM with time period $T = \sqrt{\frac{m}{K}} = 2\pi \sqrt{\frac{R}{g}}$

14.40 Assume that t = 0 when $\theta = \theta_0$. Then,

 $\theta = \theta_o \cos \omega t$

Given a seconds pendulum ω = 2π

At time
$$t_1$$
, let $\theta = \theta_0/2$
 $\therefore \qquad \cos 2\pi t_1 = 1/2 \implies t_1 = \frac{1}{6}$
 $\dot{\theta} = -\theta_0 2\pi \sin 2\pi t \qquad \left[\dot{\theta} = \frac{d\theta}{dt}\right]$
At $t_1 = 1/6$
 $\dot{\theta} = -\theta_0 2\pi \sin \frac{2\pi}{6} = -\sqrt{3}\pi\theta_0$
Thus the linear velocity is

 $u = -\sqrt{3}\pi\theta_0 l$ perpendicular to the string.

The vertical component is

$$u_y = -\sqrt{3}\pi\theta_0 l\sin\theta_0$$

and the horizontal component is

$$u_x = -\sqrt{3\pi\theta_0 l\cos\theta_0}$$

At the time it snaps, the vertical height is

$$H' = H + l(1 - \cos(\theta_0 / 2))$$

Let the time required for fall be t, then

 $H' = u_y t + (1/2) gt^2 \text{ (notice } g \text{ is also in the negative direction)}$ Or, $\frac{1}{2} gt^2 + \sqrt{3}\pi\theta_0 l\sin\theta_0 t - H' = 0$ $\therefore t = \frac{-\sqrt{3}\pi\theta_0 l\sin\theta_0 \pm \sqrt{3\pi^2\theta_0^2} e^2\sin^2\theta_0 + 2gH'}{g}$ $\approx \frac{-\sqrt{3}\pi l\theta_0^2 \pm \sqrt{3\pi^2\theta_0^4} l^2 + 2gH'}{g}$

Neglecting terms of order θ_0^2 and heigher,

$$t \simeq \sqrt{\frac{2H'}{g}}$$
.
Now $H' \simeq H + l(1-1) = H \therefore t \simeq \sqrt{\frac{2H}{g}}$

The distance travelled in the *x* direction is $u_x t$ to the left of where it

snapped.

$$X = \sqrt{3}\pi\theta_0 l\cos\theta_0 \sqrt{\frac{2H}{g}}$$

To order of θ_0 ,
$$X = \sqrt{3}\pi\theta_0 l \sqrt{\frac{2H}{g}} = \sqrt{\frac{6H}{g}}\theta_0 l$$

At the time of snapping, the bob was

 $l\sin\theta_0 \simeq l\theta_0$ distance from A.

Thus, the distance from A is

$$l\theta_0 - \sqrt{\frac{6H}{g}} l\theta_0 = l\theta_0 (1 - \sqrt{6H/g})$$