$(x+a)=C_{0} x a+C_{1} x a+C_{2} x a+\ldots \ldots \ldots \ldots \ldots .+C_{r} x a \ldots \ldots .+C_{n} x a$

$$
(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}
$$

Proof:

We can prove this theorem with the help of mathematical induction Let us assume $\mathrm{P}(\mathrm{n})$ be the statement is
$(x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots$ \qquad $+{ }^{n} C_{r} x^{n-r} a^{r}$ \qquad $+{ }^{n} C_{n} x^{0} a^{n}$

Step 1

Now the value of $P(1)$

$$
\begin{aligned}
(x+a)^{1} & ={ }^{1} C_{0} x^{1} a^{0}+{ }^{1} C_{1} x^{1-1} a^{1} \\
& =(x+a)
\end{aligned}
$$

So $P(1)$ is true

Step 2

Now the value of $\mathrm{P}(\mathrm{m})$
$(x+a)^{m}={ }^{m} C_{0} x^{m} a^{0}+{ }^{m} C_{1} x{ }^{m-1} a^{1}+{ }^{m} C_{2} x^{m-2} a^{2}+\ldots \ldots \ldots \ldots \ldots . .+{ }^{m} C_{r} x^{m-r} a^{r} \ldots \ldots .+{ }^{m} C_{n} x^{0} a^{m}$

Now we have to prove
$(x+a)^{m+1}={ }^{m+1} C_{0} x^{m+1} a^{0}+{ }^{m+1} C_{1} x^{m} a^{1}+{ }^{m+1} C_{2} x^{m-1} a^{2}+\ldots \ldots \ldots \ldots \ldots . .+{ }^{m+1} C_{r} x^{m-r-1} a^{r} \ldots \ldots .+{ }^{m+1} C_{m+1} x^{0} a^{m+1}$
Now
$(x+a)^{m+1}=(x+a)(x+a)^{m}$
$=(x+a)\left({ }^{m} C_{0} x^{m} a^{0}+{ }^{m} C_{1} x^{m-1} a^{1}+{ }^{m} C_{2} x^{m-2} a^{2}+\ldots \ldots \ldots \ldots \ldots . .+{ }^{m} C_{r} x^{m-r} a^{r} \ldots \ldots .+{ }^{m} C_{n} x^{0} a^{m}\right)$
$={ }^{m} C_{0} x^{m+1} a^{0}+\left({ }^{m} C_{1}+{ }^{m} C_{0}\right) x^{m} a^{1}+\left({ }^{m} C_{2}+{ }^{m} C_{1}\right) x^{m-1} a^{2}+$ \qquad
$+\left({ }^{m} C_{m-1}+{ }^{m} C_{m}\right) x^{1} a^{m}+{ }^{m} C_{m} \times{ }^{0} a^{m+1}$
As ${ }^{m} C_{r-1}+{ }^{m} C_{r}={ }^{m+1} C_{r}$
So
$={ }^{m+1} C_{0} x^{m+1} a^{0}+{ }^{m+1} C_{1} x^{m} a^{1}+{ }^{m+1} C_{2} x^{m-1} a^{2}+\ldots \ldots \ldots \ldots \ldots .+{ }^{m+1} C_{r} x^{m-r-1} a^{r} \ldots \ldots .+{ }^{m+1} C_{m+1} x^{0} a^{m+1}$
So by principle of Mathematical induction, $P(n)$ is true for n ? N

Important conclusion from Binomial Theorem

$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
We can easily see that $(x+a)^{n}$ has $(n+1)$ terms as k can have values from 0 to n

The sum of indices of x and a in each is equal to n
$x^{n-k} a^{k}$

The coefficient ${ }^{n} C_{r}$ is each term is called binomial coefficient
$(x-a)^{n}$ can be treated as $[x+(-a)]^{n}$
So
$(x-a)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{n-k} a^{k}$

So the terms in the expansion are alternatively positive and negative. The last term is positive or negative depending on the values of n
$(1+x)^{n}$ can be treated as $(x+a)^{n}$ where $x=1$ and $a=x$
So
$(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
This is the expansion is ascending order of power of x
$(1+x)^{n}$ can be treated as $(x+a)^{n}$ where $x=x$ and $a=1$
So
$(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k}$
This is the expansion is descending order of power of x
$(1-x)^{n}$ can be treated as $(x+a)^{n}$ where $x=1$ and $a=-x$
So
$(1-x)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k}$
This is the expansion is ascending order of power of x

Examples: Expand using Binomial Theorem

$$
\left(x^{2}+2\right)^{5}
$$

Solution: We know from binomial Theorem

$(x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots \ldots \ldots \ldots \ldots .+{ }^{n} C_{r} x^{n-r} a^{r} \ldots \ldots .+{ }^{n} C_{n} x^{0} a^{n}$
So putting values $x=x^{2}, a=2$ and $n=5$

We get

$$
\begin{aligned}
& \left(x^{2}+2\right)^{5}={ }^{5} C_{0}\left(x^{2}\right)^{5}+{ }^{5} C_{1}\left(x^{2}\right)^{4} 2^{1}+{ }^{5} C_{2}\left(x^{2}\right)^{3} 2^{2}+{ }^{5} \mathrm{C}_{3}\left(x^{2}\right)^{2} 2^{3} \\
& +{ }^{5} C_{4}\left(x^{2}\right)^{1} 2^{4}+{ }^{5} \mathrm{C}_{5}\left(x^{2}\right)^{0} 2^{5} \\
& =x^{10}+20 x^{8}+160 x^{6}+640 x^{4}+1280 x^{2}+1024
\end{aligned}
$$

General Term in Binomial Expansion

$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$
The First term would be $={ }^{n} C_{0} x^{n} a^{0}$
The Second term would be $={ }^{n} C_{1} x^{n-1} a^{1}$
The Third term would be $={ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}$ n-2 a^{2}
The Fourth term would be $={ }^{n} C_{3} x^{n-3} a^{3}$
Like wise ($k+1$) term would be
$T_{k+1}={ }^{n} C_{k} x^{n-k} a^{k}$
This is called the general term also as every term can be find using this term

$$
\mathrm{T}_{1}=\mathrm{T}_{0+1}={ }^{n} C_{0} x^{n} a^{0}
$$

$$
T_{2}=T_{1+1}={ }^{n} C_{1} x^{n-1} a^{1}
$$

Similarly for

$$
\begin{aligned}
& (x-a)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{n-k} a^{k} \\
& T_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}(-1)^{\mathrm{k}} x^{\mathrm{n}-\mathrm{k}} \mathrm{a}^{\mathrm{k}}
\end{aligned}
$$

Again similarly for
$(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$
$\mathrm{T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$
Again similarly for
$(1-x)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k}$
$\mathrm{T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}(-1)^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$
To summarize it

Binomial term	$(\mathrm{k}+1)$ term
$(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} a^{k}$	$\mathrm{~T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k} \mathrm{a}^{\mathrm{k}}}$
$(x-a)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{n-k} a^{k}$	$\mathrm{~T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}(-1)^{\mathrm{k}} \mathrm{x}^{\mathrm{n}-\mathrm{k} \mathrm{a}^{\mathrm{k}}}$
$(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$	$\mathrm{~T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$
$(1-x)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{k}$	$\mathrm{~T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}(-1)^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$

Middle Term in Binomial Expansion

If n is odd, then $(\mathrm{n}+1) / 2$ and $(\mathrm{n}+3) / 3$ are the middle term

Examples:

If the coefficient of $(2 k+4)$ and $(k-2)$ terms in the expansion of $(1+x)^{24}$ are equal then find the value of k

Solution:

The general term of $(1+x)^{n}$ is
$\mathrm{T}_{\mathrm{k}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$
Hence coefficient of $(2 k+4)^{\text {th }}$ term will be

$$
\mathrm{T}_{2 \mathrm{k}+4}=\mathrm{T}_{2 \mathrm{k}+3+1}={ }^{24} \mathrm{C}_{2 \mathrm{k}+3}
$$

and coefficient or $(k-2)^{\text {th }}$ term will be
$T_{k-2}=T_{k-3+1}={ }^{24} C_{k-3}$
As per question both the terms are equal

$$
\begin{aligned}
& { }^{24} C_{2 k+3}={ }^{24} C_{k-3} . \\
& =>(2 k+3)+(k-3)=24 \\
& r=8
\end{aligned}
$$

CHAPTER 8

BINOMIAL THEOREM

Binomial theorem for any positive integer n
$(\mathrm{a}+\mathrm{b})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{a}^{\mathrm{n}-3} \mathrm{~b}^{3}+\ldots \ldots . .+{ }^{\mathrm{n}} C_{n} \mathrm{~b}^{\mathrm{n}}$

Recall

1) ${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
2) ${ }^{n} C_{r}={ }^{n} C_{n-r}$

$$
\begin{aligned}
& { }^{7} \mathrm{C}_{4}={ }^{7} \mathrm{C}_{3}=\frac{7 \times 6 \times 5}{1 \times 2 \times 3}=35 \\
& { }^{8} \mathrm{C}_{6}={ }^{8} \mathrm{C}_{2}=\frac{8 \times 7}{1 \times 2}=28
\end{aligned}
$$

3) ${ }^{n} C_{n}={ }^{n} C_{0}=1$
4) ${ }^{n} C_{1}=n$

OBSERVATIONS/ FORMULAS

1) The coefficients ${ }^{n} C_{r}$ occurring in the binomial theorem are known as binomial coefficients.
2) There are $(\mathrm{n}+1)$ terms in the expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$, ie one more than the index.
3) The coefficient of the terms equidistant from the beginning and end are equal.
4) $(1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{x}^{3}+\ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$. (By putting a $=1$ and $b=x$ in the expansion of $\left.(a+b)^{n}\right)$.
5) $(1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2}-{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{x}^{3}+\ldots \ldots+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ (By putting a $=1$ and $b=-x$ in the expansion of $\left.(a+b)^{n}\right)$.
6) $2^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$ (By putting $\mathrm{x}=1$ in (4))
7) $0={ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}-{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots . .+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$. (By putting $\mathrm{x}=1$ in (5))
$\left.8^{* *}\right)(\mathrm{r}+1)^{\text {th }}$ term in the binomial expansion for $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ is called the general term which is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r} .
$$

i.e to find $4^{\text {th }}$ term $=T_{4}$, substitute $r=3$.

9*) Middle term in the expansion of $(a+b)^{n}$
i) If \mathbf{n} is even, middle term $=\left[\frac{n}{2}+1\right]^{\text {th }}$ term.

If \mathbf{n} is odd, then 2 middle terms are, $\left[\frac{n+1}{2}\right]^{\text {th }}$ term and $\left[\frac{n+1}{2}+1\right]^{\text {th }}$ term.

10*) To find the term independent of x or the constant term, find the coefficient of x^{0}.(ie put power of $x=0$ and find r)

Problems

eg 4** (4 marks)

Ex 8.1

Q 2,4,7,9 (1 mark)
10* $, 11^{*}, 12^{*} \quad$ (4 marks)
$13^{* *}, 14^{* *}$ (4 marks)
$13^{* *}$) Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer Or
$3^{2 n+2}-8 n-9$ is divisible by 64
Solution: $9^{n+1}-8 n-9=(1+8)^{n+1}-8 n-9$

$$
\begin{aligned}
& ={ }^{\mathrm{n}+1} \mathrm{C}_{0}+{ }^{\mathrm{n}+1} \mathrm{C}_{1} 8+{ }^{\mathrm{n}+1} \mathrm{C}_{2} 8^{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{3} 8^{3}+\ldots \ldots .+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1} 8^{\mathrm{n}+1}-8 \mathrm{n}-9 \\
& =1+8 n+8+8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} .8+\ldots . .+8^{n-1}\right]-8 n-9 \\
& \text { (since }{ }^{\mathrm{n}+1} \mathrm{C}_{0}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1}=1,{ }^{\mathrm{n}+1} \mathrm{C}_{1}={ }^{\mathrm{n}+1} \text {, } \\
& \left.8^{n+1} / 8^{2}=8^{n+1-2}=8^{n-1}\right) \\
& =8^{2}\left[{ }^{\mathrm{n}+1} \mathrm{C}_{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{3} .8+\ldots . .+8^{\mathrm{n}-1}\right] \text { which is divisible by } 64
\end{aligned}
$$

Problems

Ex 8.2

Q 2,3* (1 mark)

Q 7**, $8^{* *}, 9^{* *}, 11^{* *}, 12 * *\left(4\right.$ marks), $10^{* *} \quad$ (6 marks)
eg 10**,11 (HOT),12 (HOT), 13(HOT), eg 15*, 17** (4 marks)

Misc ex

Q 1** (6 mark),2,3(HOT), 8* (4 marks)

Ex 8.2

Q 10**(6 marks)
The coefficients of the $(\mathrm{r}-1)^{\text {th }}, \mathrm{r}^{\text {th }}$ and $(\mathrm{r}+1)^{\text {th }}$ terms in the expansion of $(\mathrm{x}+1)^{\mathrm{n}}$ are in the ratio $1: 3: 5$. Find n and r.

Solution
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}}=\mathrm{T}_{(\mathrm{r}-1)+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{n}-\mathrm{r}+1}$
$\mathrm{T}_{\mathrm{r}-1}=\mathrm{T}_{\mathrm{T}(-2)+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{n}-\mathrm{r}+2}$
Given ${ }^{n} C_{r-2}:{ }^{n} C_{r-1}:{ }^{n} C_{r}:: 1: 3: 5$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{1}{3}$
$\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r}+2)!(\mathrm{r}-2)!} \div \frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r}+1)!(\mathrm{r}-1)!}=\frac{1}{3}$
$\frac{(\mathrm{n}-\mathrm{r}+1)!}{(\mathrm{n}-\mathrm{r}+2)!} \times \frac{(\mathrm{r}-1)!}{(\mathrm{r}-2)!}=\quad \frac{1}{3}$
$(\mathrm{n}-\mathrm{r}+1)!\quad \times(\mathrm{r}-2)!(\mathrm{r}-1)=\quad 1$
(n-r+1)!(n-r+2) (r-2)! 3
$\xrightarrow{\mathrm{r}-1}=1$
n-r+2 3
$3 \mathrm{r}-3=\mathrm{n}-\mathrm{r}+2$
$n-4 \mathrm{r}=-5$ \qquad
${ }^{n} C_{\underline{r}-1}=\underline{3}$
solving (1) and (2) we get
$\mathrm{n}=7$ and $\mathrm{r}=3$.

EXTRA/HOT QUESTIONS

1) Using Binomial theorem show that $2^{3 n}-7 n-1$ or $8^{n}-7 n-1$ is divisible by 49 where n is a natural number. (4 marks**)
2) Find the coefficient of x^{3} in the equation of $(1+2 x)^{6}(1-x)^{7}$ (HOT)
3) Find n if the coefficient of $5^{\text {th }}, 6^{\text {th }} \& 7^{\text {th }}$ terms in the expansion of $(1+x)^{\text {n }}$ are in A.P.
4) If the coefficient of x^{r-1}, x^{r}, x^{r+1} in the expansion of $(1+x)^{n}$ are in A.P. prove that $n^{2}-(4 r+1) n+4 r^{2}-2=0$. (HOT)
5) If $6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }} \& 9^{\text {th }}$ terms in the expansion of $(x+y)^{\text {n }}$ are respectively a, b, c $\& d$ then show that $\frac{b^{2}-a c}{c^{2}-b d}=\frac{4 a}{3 c}(H O T)$
6) Find the term independent of x in the expansion of $\left[3 x^{2}-\frac{1}{2 x^{3}}\right]^{10}$ (4 marks*)
7) Using Binomial theorem show that $3^{3 n}-26 n-1$ is divisible by 676 . (4 marks**)
8) The $3^{\text {rd }}, 4^{\text {th }} \& 5^{\text {th }}$ terms in the expansion of $(\mathrm{x}+\mathrm{a})^{\mathrm{n}}$ are $84,280 \& 560$ respectively. Find the values of x, a and n. (6 marks**)
9) The coefficient of 3 consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $3: 8: 14$. Find n. (6 mark**)
10) Find the constant term in the expansion of $(x-1 / x)^{14}$
11) Find the middle term(s) in the expansion of

$$
\text { i) }\left[\frac{x}{a}-\frac{a}{x}\right]^{10} \text { ii) }\left[2 x-\frac{x^{2}}{4}\right]^{9}
$$ If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}$

Prove that $\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots . .+\mathrm{nC}_{\mathrm{n}}=\mathrm{n} .2^{\mathrm{n}-1}$
Answers
2) -43
3) $n=7$ or 14
6) $76545 / 8$
8) $x=1, a=2, n=7$
9) 10
10) -3432
11) i) -252
ii) $-63 x^{14}$

