Mathematics COPLANAR, COLLINEAR

Condition for coplanarity of four points :

4 points with pv's `vec(a),vec(b),vec(c),vec(d)` are coplanar iff `EE` scalars x, y, z and t not all simultaneously zero and satisfying

`xvec(a) + yvec(b)+zvec(c)+ tvec(d) =0` where `x + y + z + t = 0`.

Case I :
Let the four points `A, B, C, D` are in the same plane
`=> ` the vectors `vec(b) -vec(a)` ,`vec(c) -vec(a)` and `vec(d)-vec(a)` are in the same plane.

Hence `vec(d) -vec(a)` `= l (vec(b) -vec(a)) + m (vec(c) -vec(a))`

or ` underbrace( l + m-1)_(x) vec(a) - underbrace(l)_(y) vec(b) - underbrace(m)_(z) vec(c) + underbrace(1)_(t) vec(d) =0 => x vec(a) +yvec(b) +zvec(c) +tvec(d) =0` where `x+y+z+t =0` and `x, y, z, t` not all simultaneous zero.

Case ll :
Let `xvec(a) + yvec(b) +zvec(c)+tvec(d)=0` where `x + y + z + t = 0` and not all simultaneously zero

Let `t ne 0` `(-y-z-t) vec(a) +yvec(b)+zvec(c)+tvec(d)=0` [putting `x =- y - z - t`]
` (vec(d) -vec(a))t + y (vec(b)-vec(a)) +z (vec(c)-vec(a)) =0`
`=> vec(d)-vec(a), vec(b)-vec(a)` and `vec(c)-a` are coplanar `=> ` points `A, B, C, D` are coplanar


Theorem in space :

If `vec(a),vec(b),vec(c)` are `3` non zero non coplanar vectors then any vector `vec(r)` can be
expressed as a linear combination: `vec(r) = xvec(a) + y vec(b) +zvec(c)` of `vec(a),vec(b),vec(c)`


Examples:
Express the non coplanar vectors `vec(a),vec(b),vec(c)` in terms of `vec(b)xx vec(c) , vec(c)xx vec(a) ,vec(a)xx vec(b) `

Since ` [vec(a)vec(b)vec(c)]^2 = [(vec(a) xx vec(b)) (vec(b) xx vec(c)) (vec(c) xx vec(a)) ]`

`:.` If `vec(a) ,vec(b),vec(c)` are non-coplanar

`=> vec(a) xx vec(b),vec(b) xx vec(c),vec(c) xx vec(a)` are also non coplanar.

` vec(a) = x (vec(a) xx vec(b)) + y (vec(b) xx vec(c)) +z (vec(c) xx vec(a))`

Taking dot product with `vec(a)`
`vec(a)^2 = y [vec(a)vec(b)vec(c)] => y = (vec(a))^2/[vec(a)vec(b)vec(c)]`


Taking dot product with `vec(b)`
`vec(a)*vec(b)=z [vec(b) vec(c) vec(a)] => z = (vec(a)vec(b))/[vec(a)vec(b)vec(c)]`

Similarly taking dot product with `vec(c)`
`vec(a)*vec(c)=x [vec(a) vec(b) vec(c)] => x = (vec(a)vec(c))/[vec(a)vec(b)vec(c)]`

`:.` `vec(a) = ( (vec(a)*vec(c))(vec(a)*vec(b))+(vec(a))^2(vec(b)*vec(c))+(vec(a)*vec(b))(vec(c)*vec(a)) )/[ vec(a)vec(b)vec(c)]`

Collinear Vectors or Parallel Vectors :

Vectors which are parallel to the same line are called collinear vectors or parallel vectors. Such vectors
have either same direction or opposite direction. If they have the same direction they are said to be like
vectors, and if they have opposite directions, they are called unlike vectors.

In the diagram `vec(a)` and `vec(c)` are like vectors whereas `vec(a)` and `vec(b)` are unlike vectors.

i.e. `vec(a) =k_1 vec(c) (k_1 > 0), vec(a)=k_2 vec(b) (k_2 <0)`

Coplanar Vectors :

If the directed line segments of some given vectors are parallel to the same plane then they are called
coplanar vectors. It should be noted that two vectors are always coplanar but three or more vectors may
or may not be coplanar.

 
SiteLock