SUM OR DIFFERENCE OF THE ANGLE

The algebraic sums of two or more angles are generally called compound angles and the angles are known as the constituent angles.
For example : If `A, B, C` are three angles then `A - B, A + B + C, A - B + C` etc. are compound angles.

`(a) \ \ \ \ \ \sin (A + B) =sin A cos B + cos A sin B`

`(b) \ \ \ \ \ \sin(A - B) = sinA cosB - cosA sinB`

`(c) \ \ \ \ \ \cos (A + B) = cos A cos B - sin A sin B`

`(d) \ \ \ \ \ \cos (A - B) = cos A cos B + sin A sin B`

`(e) \ \ \ \ \ \tan (A + B) = (tanA+ tanB) /(1-tanA tanB)`

`(f) \ \ \ \ \ \ tan (A - B) =(tanA- tanB) /(1+tanA tanB)`

`(g) \ \ \ \ \ \cot (A + B) = (cotA cot B-1)/(cotB + cotA)`

`(h) \ \ \ \ \ \cot (A - B) =(cotA cot B+1)/(cotB - cotA)`

Some More Results :

`(a) \ \ \ \ \ \sin (A + B).sin (A - B) = sin^2 A - sin^2 B = cos^2 B - cos^2 A`

`(b)\ \ \ \ \ \ cos (A + B).cos (A - B) = cos^2 A - sin^2 B= cos^2 B - sin^2 A`

`(c) \ \ \ \ \ \sin (A + B + C) = sin A cos B cos C + cos A sin B sin C + cos A cos B sin C - sin A sin B sin C`

`(d) \ \ \ \ \ \cos (A + B + C) = cos A cos B cos C - cos A. sin B sin C - sin A cos B sin C - sin A sinB cosC`

`(e) \ \ \ \ \ \tan (A + B + C)=(tanA+ tanB+ tan C-tanA tanB tanC)/(1-tanA tanB- tanB tanC -tanC tanA)`


FORMULA TO TRANSFORM THE PRODUCT INTO SUM OR DIFFERENCE

We know that,
`sin A cos B + cos A sin B = sin (A + B) .......(i)`

`sin A cos B - cos A sin B = sin (A - B) ......(ii)`

`cos A cos B - sin A sin B = cos (A + B) .....(iii)`

`cos A cos B + sin A sin B = cos (A - B) .....(iv)`

Adding `(i)` and `(ii),`

`2 sin A cos B = sin (A + B) + sin (A - B)`

Subtracting `(ii)` from `(i),`

`2 cos A sin B = sin (A + B) - sin (A - B)`

Adding `(iii)` and `(iv),`

`2 cosA cos B = cos (A + B) + cos (A - B)`

Subtraction `(iii)` from `(iv).`

`2 sin A sin B = cos (A - B) - cos (A + B)`

Formula :
`(a) \ \ \ \ \ \2 sin A cos B = sin (A + B) + sin (A - B)`

`(b)\ \ \ \ \ \ 2 cos A sin B = sin (A + B) - sin (A - B)`

`(c) \ \ \ \ \ \2 cos A cos B = cos (A + B) + cos (A - B)`

`(d) \ \ \ \ \ \2 sin A sin B = cos (A - B) - cos (A + B)`

FORMULA TO TRANSFORM THE SUM OR DIFFERENCE INTO PRODUCT

We know that,
`sin (A + B) + sin(A - B) = 2 sin A cos B ......(i)`

Let `A+ B = C` and `A - B = D`

then `A =((C +D)/2)` and `B =((C -D)/2)`

Substituting in `(i),`

`(a)\ \ \ \ \ \ sin C+ sin D = 2 sin((C +D)/2).cos((C -D)/2)`

similarly other formula,

`(b) \ \ \ \ \ \sin C - sin D = 2 cos ((C +D)/2).sin ((C -D)/2) `

`(c)\ \ \ \ \ \ cos C + cos D= 2 cos ((C +D)/2) .cos ((C -D)/2) `

`(d)\ \ \ \ \ \ cos C - cos D = 2 sin ((C +D)/2) .sin ((C -D)/2) `

 
SiteLock