

`pi/6`

`pi/4`

`pi/3`

`pi/2`



`pi`

`pi/2`

`pi/4`

none of these



` tan^(-1) ( y/x)`

` tan^(-1) ( x/y)`

` - tan^(-1) ( x/y)`

None of these



`pi/8`

`pi/4`

`pi/2`

`pi`



` ((n - 1)d)/(a_1 + a_n)`

` ((n - 1)d)/(1 + a_1 a_n)`

` (n d)/( 1+ a_1 a_n)`

`(a_n - a_1)/(a_n + a_1)`



`0`

`1`

`2`

`3`



`n`

`2n`

`(n ( n + 1))/2`

none of these



`-3`

`0`

`3`

`-1`



`pi - cos^(-1) { sqrt( 1- x^2) }`

` tan^(-1) { x/sqrt(1-x^2)}`

` - cot^(-1) { sqrt(1 - x^2)/x }`

`cosec^(-1) x`



`1`

`2`

`3`

`4`



`a+ b = 23`

`a- b = 11`

`3b =a+ 1`

`2a = 3b`



`6/17`

`7/16`

`16/7`

None of these


(This question may have multiple correct answers)



`0`

`-1`

`-2`

`-3`


(This question may have multiple correct answers)



`[tan sin cos 1, tan sin cos sin 1]`

`(tan sin cos 1, tan sin cos sin 1)`

`[- 1, 1]`

`[sin cos tan 1, sin cos sin tan 1]`



`x in [ 0, 1/sqrt 2]`

` x in [ 1/sqrt 2 , 1]`

`x in (0, 1/sqrt 2)`

None of these



`0`

`-1`

`1`

`2`


| Column I | Column II | ||
|---|---|---|---|
| (A) | The number of possible values of `k` if fundamental period of `sin^(-1) (sin kx)` is `pi/2` , is | (P) | `1` |
| (B) | Numbers of elements in the domain of `f(x) = tan^(-1) x + sin^(-1) x + sec^(-1 ) x` is | (Q) | `2` |
| (C) | Period of the function `f(x) = sin ((pi x)/2) * cosec ((pi x)/2)` is | (R) | `3` |
| (D) | If the range of the function `f(x) = cos^(-1) [5x]` is `{a, b, c}` and `a + b + c = (lambda pi )/2`, then `lambda` is equal to (where `[*]` denotes greatest integer) | (S) | `4` |
| (T) | `0` | ||

(A)-> (p), (B)-> (q), (C)-> (q), (D)-> (r)

(A)-> (s), (B)-> (q), (C)-> (q), (D)-> (r)

(A)-> (q), (B)-> (q), (C)-> (q), (D)-> (r)

(A)-> (t), (B)-> (q), (C)-> (q), (D)-> (r)
