Mathematics Trigonometric Functions of Sum and Difference of Two Angles , Sum Of Two Functions and Product Of Two Functions
Click for Only Video

Topics Covered

`\color{red} {⧫}` Trigonometric Functions of Sum and Difference of Two Angles
`\color{red} {⧫}` Sum Of Two Functions
`\color{red} {⧫}` Product Of Two Functions

Trigonometric Functions of Sum and Difference of Two Angles

`\color{blue} ✍️` In this Section, we shall derive expressions for trigonometric functions of the sum and difference of two numbers (angles) and related expressions.

The basic results in this connection are called trigonometric identities. We have seen that
`1. \ \ color{red}(sin (– x) = – sin x)`
`2. \ \ color{red}( cos (– x) = cos x)`

We shall now prove some more results:

`3. \ \ color{red}( cos (x + y) = cos x cos y – sin x sin y)`

`\color{blue} ✍️` Consider the unit circle with centre at the origin. Let `x` be the angle `color{red}(P_4OP_1)` and `y` be the angle `color{red}(P_1OP_2)`. Then `color{red}((x + y))` is the angle `color{red}(P_4OP_2)`. Also let `color{red}((– y))` be the angle `color{red}(P_4OP_3)`.

`\color{blue} ✍️` Therefore, `P_1, P_2, P_3` and `P_4` will have the coordinates `color{red}(P_1 \ \(cos x, sin x), ``color{greeen}[ P_2 \ \ [cos (x + y), sin (x + y)]]`,`color{purple}[ P_3 \ \ [cos (– y), sin (– y)]]` and `color{red}(P_4 \ \ (1, 0))` (Fig 3.14).


Consider the triangles `color{red}(P_1OP_3)` and `color{red}(P_2OP_4)`. They are congruent Therefore,

`color{red}(1P_1P_3)` and `color{red}(1P_2P_4)` are equal. By using distance formula, we get

`color{red}(1P_1P_3^2 = [cos x – cos (– y)]^2 + [sin x – sin(–y)^2]`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \= (cos x – cos y)^2 + (sin x + sin y)^2`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \= cos^2 + cos^2 y – 2 cos x cos y + sin^2 x + sin^2 y + 2sin x sin y`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \= 2 – 2 (cos x cos y – sin x sin y)`

Also, `color{red}(P_2P_4^2 = [1 – cos (x + y)]^2 + [0 – sin (x + y)]^2)`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \= 1 – 2cos (x + y) + cos^2 (x + y) + sin^2 (x + y)`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \= 2 – 2 cos (x + y)`


Since `color{red}(P_1P_3 = P_2P_4,)` we have `color{red}(P_1P_3^2 = P_2P_4^2)`.

Therefore, `2 –2 (cos x cos y – sin x sin y) = 2 – 2 cos (x + y)`.

Hence `color{red}(cos (x + y) = cos x cos y – sin x sin y)`

4. ` cos (x – y) = cos x cos y + sin x sin y`

Replacing `y` by `– y` in identity `cos (x + y) = cos x cos y – sin x sin y`, we get

`cos (x + (– y)) = cos x cos (– y) – sin x sin (– y)`

or `color{red}(cos (x – y) = cos x cos y + sin x sin y)`

5 . `cos (pi/2 -x) = sin x`

If we replace `x` by `color{red}(pi/2)` and `y` by `x` in Identity (4), we get

`color{red}(cos (pi/2-x) = cos (pi/2) cos x + sin ( pi/2) sin x = sin x)`

6. `sin (pi/2 -x) = cos x`

Using the Identity 5, we have

`color{red}(sin (pi/2 -x) = cos [ pi/2 - (pi/2- x) ] = cos x)`

7. `sin (x + y) = sin x cos y + cos x sin y` We know that

`color{blue}(sin (x+ y) = cos (pi/2 - (x+y) ) = cos ( (pi/2 -x ) - y ))`

`color{}(= cos (pi/2-x) cos y +sin (pi/2-x) sin y)`

`color{red}(= sin x cos y + cos x sin y)`

8 `sin (x – y) = sin x cos y – cos x sin y`

If we replace `y` by `–y,` in the Identity 7, we get the result .

`color(red)(sin (x – y) = sin x cos y – cos x sin y)`
Q 3136601572

Find the value of sin `15°.`

Solution:

We have
`sin 15° = sin (45° – 30°)`
`= sin 45° cos 30° – cos 45° sin 30°`

`=1/sqrt2 xx sqrt3/2 - 1/2 xx 1/2 = ((sqrt3)-1)/2sqrt2`
Q 3186701677

Prove that

`(sin (x+y))/(sin (x-y))= (tan x+tan y)/(tan x-tan y)`

Solution:

We have

`L.H.S. (sin (x+y))/(sin (x-y)) = (sin x cos y + cos xsin y)/(sin x cos y - cos x sin y )`

Dividing the numerator and denominator by cos `x` cos `y,` we get

`(sin (x+y))/(sin (x-y))= (tan x+tan y)/(tan x-tan y)`

9. By taking suitable values of `x` and `y` in the identities 3, 4, 7 and 8, we get the following results:

`color{red}(cos ( pi/2 +x) = - sin x)`

`color{red}(sin (pi/2 +x) = cos x)`

`color{red}(cos (pi-x) = - cos x)`

`color{red}(sin (pi-x) = sin x)`

`color{red}(cos (π + x) = – cos x)`

`color{red}(sin (π + x) = – sin x)`

`color{red}(cos (2π – x) = cos x)`

`color{red}(sin (2π – x) = – sin x)`

Similar results for tan `x`, `cot x`, `sec x` and `cosec x` can be obtianed from the results of `sin x` and `cos x.`
Q 3106501478

Prove that

`3sin (pi/6) sec(pi/3) -4 sin (5pi/6) cot` `pi/4 = 1`

Solution:

We have

`L.H.S. = 3sin (pi/6) sec( pi/6) - 4 sin ( 5pi/6) cot` `pi/4`

`= 3 ×1/2 xx 2 -4 sin (pi - pi/6 ) xx 1 =3 -4 sin ` `pi/6`

`= 3 – 4 × 1/2 = 1 = R.H.S`

10. If none of the angles `x, y` and `color{red}((x + y))` is an odd multiple of `color{red}(pi/2)` , then ` tan (x+y) = (tan x + tan y)/(1- tan x tan y)`

Since none of the `color{red}(x, y)` and `color{red}((x + y))` is an odd multiple of `color{red}(π/2)` , it follows that `cos x,` `cos y` and `cos (x + y)` are non-zero. Now

`color{green}( tan (x + y) = (sin (x+y ) )/( cos (x+y) ) = (sin x cos y + cos x sin y )/( cos x cos y - sin x sin y ))`

Dividing numerator and denominator by `cos x` `cos y`, we have

`color{red}(tan (x+y) ) = ( (sin x cos y )/( cos x cos y ) + ( cos x sin y)/(cos x cos y) )/( (cos x cos y)/( cos x cos y ) - ( sin x sin y )/( cos x cos y) )`

` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \color{red}(= (tan x + tan y )/(1- tan x tan y ))`

Q 3106701678

Show that
`tan 3 x tan 2 x tan x = tan 3x – tan 2 x – tan x`

Solution:

We know that `3x = 2x + x`

Therefore, `tan 3x = tan (2x + x)`

or `tan3x = (tan 2x+tanx)/(1-tan 2sx tan x)`

or `tan 3x – tan 3x tan 2x tan x = tan 2x + tan x`
or `tan 3x – tan 2x – tan x = tan 3x tan 2x tan x`
or `tan 3x tan 2x tan x = tan 3x – tan 2x – tan x`.

`tan ( x – y) = (tan x - tan y )/( 1+ tan x tan y)`

If we replace `y` by `– y` in Identity 10, we get

`color{blue}(tan (x – y) = tan [x + (– y)])`

` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ color{red}(= (tan x+ tan (-y) )/( 1- tan x tan (-y) ) = (tan x - tan y)/(1+ tan x tan y ))`

Q 3126701671

Find the value of `tan ((13pi)/12)`

Solution:

We have
`tan ((13pi)/12) = tan (pi+pi/12) = tan (pi/12) = tan (pi/4 - pi/6)`

`(tan (pi/4) - tan (pi/6))/(1+ tan (pi/4) tan (pi/6)) = (1-1/sqrt3)/(1+1/sqrt3) = (sqrt(3)-1)/(sqrt3+1) = 2 - sqrt3`

If none of the angles `x`, `y` and `(x + y)` is a multiple of `π`, then

`color{red}(cot (x+ y ) = (cot x cot y -1 )/( cot y + cot x))`

Since, none of the `x, y` and `(x + y)` is multiple of `π`, we find that `sin x` `sin y` and `sin(x + y)` are non-zero. Now,

`color{green}(cot (x+ y) = (cos (x+ y) )/(sin (x+ y) ) = (cos x cos y – sin x sin y)/( sin x cos y + cos x sin y))`

Dividing numerator and denominator by `sin x sin y,` we have

`color{red}( cot (x+ y) = (cot x cot y -1)/( cot y + cot x))`

`cot (x – y)= (cot x cot y + 1)/(cot y - cot x)`

If we replace `y` by `–y` in identity `12,` we get the result

`color(red)(cot (x – y)= (cot x cot y + 1)/(cot y - cot x))`

`cos 2x = cos^2 x – sin^2 x = 2 cos^2 x – 1 = 1 – 2 sin^2 x = (1- tan^2 x)/(1+ tan^2 x)`

`\color{blue} ✍️` We know that

`color{green}(cos (x + y) = cos x cos y – sin x sin y)`

`\color{blue} ✍️` Replacing `y` by `x,` we get

`color{red}(cos 2x )= cos^2x – sin^2 x = 2 cos^2 x – 1`

` \ \ \ \ \ \ \ \ = cos^2 x – (1 – cos^2 x) =color{red}( 2 cos^2x – 1)`

`\color{blue} ✍️` Again, `color{green}(cos 2x = cos^2 x – sin^2 x)`

` \ \ \ \ \ \ \ \ \ \ = 1 – sin^2 x – sin^2 x = color{red}( 1 – 2 sin^2 x)`.

`\color{blue} ✍️` We have `color{green}(cos 2x = cos^2 x – sin^2 x = (cos^2 x - sin^2 x)/( cos^2 x + sin^2 x))`

Dividing each term by `color{orange}(cos^2 x,)` we get

`color{red}(cos 2x = (1- tan^2 x)/(1+ tan^2 x))`


`sin 2x = 2 sinx cos x = (2 tan x)/( 1+ tan^2 x)`

`\color{blue} ✍️` We have

`color{red}(sin (x + y) = sin x cos y + cos x sin y)`

`\color{blue} ✍️` Replacing `y` by `x,`

we get `color{red}(sin 2x = 2 sin x cos x.)`

`\color{blue} ✍️` Again `color{green}(sin 2x = (2 sin x cos x)/( cos^2 x + sin^2 x))`

Dividing each term by `color{red}(cos^2 x)`, we get

`color{red}(sin 2x = (2 tan x )/( 1+ tan^2 x))`


`tan 2x = (2 tan x)/(1- tan^2 x)`

`\color{blue} ✍️` We know that

`color{green}(tan (x+y) = (tan x + tan y )/( 1- tan x tan y))`

Replacing `y` by `x` ,

we get `color{red}(tan 2x = (2 tan x)/(1 - tan^2 x))`

`sin 3x = 3 sin x – 4 sin^3 x`

`\color{blue} ✍️` We have,

`color{green}(sin 3x = sin (2x + x))`

` \ \ \ \ \ \ \ \ \ \ \= sin 2x cos x + cos 2x sin x`

`\ \ \ \ \ \ \ \ \ \ \= 2 sin x cos x cos x + (1 – 2sin^2 x) sin x`

`\ \ \ \ \ \ \ \ \ \ \= 2 sin x (1 – sin^2 x) + sin x – 2 sin^3 x`

`\ \ \ \ \ \ \ \ \ \ \= 2 sin x – 2 sin^3 x + sin x – 2 sin^3 x`

`\ \ \ \ \ \ \ \ \ \ \ color{red}(= 3 sin x – 4 sin^3 x)`

`cos 3x= 4 cos^3 x – 3 cos x`

`\color{blue} ✍️` We have,

`color{green}(cos 3x = cos (2x +x))`

`\ \ \ \ \ \ \ \ \ \ \= cos 2x cos x – sin 2x sin x`

`\ \ \ \ \ \ \ \ \ \ \= (2cos^2 x – 1) cos x – 2sin x cos x sin x`

`\ \ \ \ \ \ \ \ \ \ \= (2cos^2 x – 1) cos x – 2cos x (1 – cos^2 x)`

`\ \ \ \ \ \ \ \ \ \ \= 2cos^3 x – cos x – 2cos x + 2 cos^3 x`

`\ \ \ \ \ \ \ \ \ \ \ color{red}(= 4 cos^3 x – 3cos x)`.

`tan 3x = (3 tan x - tan^3 x)/( 1-3 tan^2 x)`

`\color{blue} ✍️` We have

`color{red}(tan3x =tan (2x + x))`

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ color{green}(= (tan 2x +tanx)/( 1- tan 2x tan x))`

` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = ( (2 tan x)/( 1- tan^2 x) + tan x)/( 1- ( 2 tan x * tan x )/(1- tan^2 x) )`

` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \=(2 tan x + tan x - tan^3 x)/(1- tan^2 x -2 tan^2 x) `

`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ color{red}( = (3 tan x - tan^3 x)/( 1- 3 tan^2 x))`


Sum Of Two Functions

(i) `color{red}(cos x + cos y = 2 cos( (x+y)/2) cos ((x-y)/2))`

(ii) `color{red}(cos x – cos y = -2 sin ((x+y)/2) sin ((x-y)/2))`

(iii) `color{red}(sin x + sin y = 2 sin ((x+y)/2 ) cos ((x-y)/2))`

(iv) `color{red}(sin x – sin y = 2 cos ((x+y)/2) sin ((x-y)/2))`

`\color{blue} ✍️` We know that

`color{green}(cos (x + y) = cos x cos y – sin x sin y) .................................................... (1)`

and `color{green}(cos (x – y) = cos x cos y + sin x sin y ).............................................. (2)`

`color{blue}("Adding and subtracting (1) and (2)")`, we get

`color{orange}(cos (x + y) + cos(x – y) = 2 cos x cos y) .................................... (3)`

and `color{orange}(cos(x + y) – cos (x – y) = – 2 sin x sin y) .....................................................(4)`

`\color{blue} ✍️` We know that

`color{green}(sin (x + y) = sin x cos y + cos x sin y) .................................................. (5)`

and sin `color{green}((x – y) = sin x cos y – cos x sin y) .............................................. (6)`

`color{blue}("Adding and subtracting (5) and (6)")`, we get

`color{orange}(sin (x + y) + sin (x – y) = 2 sin x cos y) ................................................ (7)`

`color{orange}(sin (x + y) – sin (x – y) = 2cos x sin y) .............................................. (8)`

Let `color{red}(x + y = θ and x – y = φ.)` Therefore

`color{red}(x= ( ( θ +φ )/2 ))` and `color{red}(y = ( (θ -φ )/ 2))`

Substituting the values of `x` and `y` in `(3), (4), (7)` and `(8),` we get

`color{red}(cos θ + cos φ = 2 cos ( ( θ +φ)/2 ) cos ((θ -φ)/2 ))`

`color{red}(cos θ – cos φ = – 2 sin ( ( θ +φ )/2) sin ( ( θ -φ)/2))`

`color{red}(sin θ + sin φ = 2 sin ( ( θ +φ )/2 ) cos ( ( θ - φ)/2))`

`color{red}(sin θ – sin φ = 2 cos ( (θ +φ )/2) sin ( ( θ - φ)/2 ))`

Since `θ` and `φ` can take any real values, we can replace `θ` by `x` and `φ` by `y.`
Thus, we get

`color{red}(cos x + cos y = 2 cos( (x+y)/2) cos ((x-y)/2)) ; \ \ \ \ \ \ \ \ \ \color{red}(cos x – cos y = -2 sin ((x+y)/2) sin ((x-y)/2))` ,

`color{red}(sin x + sin y = 2 sin ((x+y)/2 ) cos ((x-y)/2)) ; \ \ \ \ \ \ \ \ \ \ \ color{red}(sin x – sin y = 2 cos ((x+y)/2) sin ((x-y)/2))` .
Q 3116801770

Prove that

`cos (pi/4 +x) + cos (pi/4 - x) = sqrt2cos x`



Solution:

Using the Identity 20(i), we have

`L.H.S cos (pi/4 +x) + cos (pi/4 - x)`

`= 2 cos ((pi/4 + x + pi/4 - x)/2) cos ((pi/4 + x - (pi/4 - x))/2)`

`= 2 cos(pi/4 )cos x = 2 xx 1/sqrt2 cos x = sqrt2 cos x = R.H.S`
Q 3176801776

Prove that `(cos 7x + cos 5x)/(sin 7x - sin 5x) = cot x`

Solution:

Using the Identities 20 (i) and 20 (iv), we get

`L.H.S (2 cos ((7x+5x)/2)cos((7x-5x)/2))/(2cos ((7x+5x)/2) sin ((7x-5x)/2)) = (cosx)/(sinx) = cot x = R.H.S`
Q 3136001872

Prove that `= (sin 5x -2 sin 3x + sinx)/(cos5x-cosx) = tan x`


Solution:

We have `L.H.S = (sin 5x-2 sin 3x+sinx)/(cos 5x - cosx) = (sin5x+sinx-2 sin 3x)/(cos 5x- cos)`

`= (2sin 3 x cos 2x - 2sin 3x)/(-2sin 3x sin 2x) = - (sin 3 x (cos2x-1))/(sin 3x sin 2x)`

`= (1-cos2x)/(sin2x) = (2sin^2x)/(2 sin xcos x) = tan x = R.H.S`

Product Of Two Functions

(i) `color{red}(2 cos x cos y = cos (x + y) + cos (x – y))`

(ii) `color{red}(–2 sin x sin y = cos (x + y) – cos (x – y))`

(iii) `color{red}(2 sin x cos y = sin (x + y) + sin (x – y))`

(iv) `color{red}(2 cos x sin y = sin (x + y) – sin (x – y))`.

 
SiteLock